Total Synthesis and Stereochemistry Assignment of Nucleoside Antibiotic A-94964
Dr. Xiaofei Shao
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
Search for more papers by this authorChang Zheng
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
Search for more papers by this authorDr. Peng Xu
State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
Search for more papers by this authorDr. Taro Shiraishi
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Search for more papers by this authorProf. Tomohisa Kuzuyama
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
Search for more papers by this authorProf. Antonio Molinaro
Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
Search for more papers by this authorCorresponding Author
Prof. Alba Silipo
Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
Search for more papers by this authorCorresponding Author
Prof. Biao Yu
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
Search for more papers by this authorDr. Xiaofei Shao
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
Search for more papers by this authorChang Zheng
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
Search for more papers by this authorDr. Peng Xu
State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
Search for more papers by this authorDr. Taro Shiraishi
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Search for more papers by this authorProf. Tomohisa Kuzuyama
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
Search for more papers by this authorProf. Antonio Molinaro
Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
Search for more papers by this authorCorresponding Author
Prof. Alba Silipo
Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
Search for more papers by this authorCorresponding Author
Prof. Biao Yu
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
Search for more papers by this authorAbstract
A collective total synthesis of eight diastereoisomers associated with NMR analysis leads to a full stereochemistry assignment of the structurally unique nucleoside antibiotic A-94964, which features an octuronic acid uridine core decorated with an α-D-mannopyranosyl residue and an α-D-N-acylglucosaminopyranosyl residue via a phosphodiester bridge.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202200818-sup-0001-misc_information.pdf33.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. Tacconelli, et al., Lancet Infect. Dis. 2018, 18, 318–327.
- 2A. Bouhss, M. Crouvoisier, D. Blanot, D. Mengin-Lecreulx, J. Biol. Chem. 2004, 279, 29974–29980.
- 3B. C. Chung, J. Zhao, R. A. Gillespie, D.-Y. Kwon, Z. Guan, J. Hong, P. Zhou, S.-Y. Lee, Science 2013, 341, 1012–1016.
- 4V. Lukose, M. T. C. Walvoort, B. Imperiali, Glycobiology 2017, 27, 820–833.
- 5T. D. H. Bugg, R. V. Kerr, J. Antibiot. 2019, 72, 865–876.
- 6G. Niu, Z. Li, P. Huang, H. Tan, J. Antibiot. 2019, 72, 906–912.
- 7M. Serpi, V. Ferrari, F. Pertusati, J. Med. Chem. 2016, 59, 10343–10382.
- 8C. A. Arbour, B. Imperiali, Bioorg. Med. Chem. 2020, 28, 115661.
- 9For previous total syntheses of nucleoside antibiotics, see:
- 9aS. Knapp, Chem. Rev. 1995, 95, 1859–1876;
- 9bT. Suami, H. Sasai, K. Matsuno, N. Suzuki, Carbohydr. Res. 1985, 143, 85–96;
- 9cA. G. Myers, D. Y. Gin, D. H. Rogers, J. Am. Chem. Soc. 1994, 116, 4697–4718;
- 9dJ. Li, B. Yu, Angew. Chem. Int. Ed. 2015, 54, 6618–6621; Angew. Chem. 2015, 127, 6718–6721;
- 9eK. Yamamoto, F. Yakushiji, T. Matsumaru, S. Ichikawa, Org. Lett. 2018, 20, 256–259;
- 9fS. Hirano, S. Ichikawa, A. Matsuda, Angew. Chem. Int. Ed. 2005, 44, 1854–1856; Angew. Chem. 2005, 117, 1888–1890;
- 9gP. Gopinath, L. Wang, H. Abe, G. Ravi, T. Masuda, T. Watanabe, M. Shibasaki, Org. Lett. 2014, 16, 3364–3367;
- 9hH. Abe, P. Gopinath, G. Ravi, L. Wang, T. Watanabe, M. Shibasaki, Tetrahedron Lett. 2015, 56, 3782–3785;
- 9iH. Nakamura, C. Tsukano, T. Yoshida, M. Yasui, S. Yokouchi, Y. Kobayashi, M. Igarashi, Y. Takemoto, J. Am. Chem. Soc. 2019, 141, 8527–8540;
- 9jT. Tanino, S. Ichikawa, M. Shiro, A. Matsuda, J. Org. Chem. 2010, 75, 1366–1377;
- 9kK. Mitachi, B. A. Aleiwi, C. M. Schneider, S. Siricilla, M. Kurosu, J. Am. Chem. Soc. 2016, 138, 12975–12980;
- 9lS. Knapp, S. R. Nandan, J. Org. Chem. 1994, 59, 281–283;
- 9mM. Kurosu, K. Li, D. C. Crick, Org. Lett. 2009, 11, 2393–2396;
- 9nC. G. Boojamra, R. C. Lemoine, J. C. Lee, R. Léger, K. A. Stein, N. G. Vernier, A. Magon, O. Lomovskaya, P. K. Martin, S. Chamberland, M. D. Lee, S. J. Hecker, V. J. Lee, J. Am. Chem. Soc. 2001, 123, 870–874;
- 9oK. Okamoto, M. Sakagami, F. Feng, H. Togame, H. Takemoto, S. Ichikawa, A. Matsuda, J. Org. Chem. 2012, 77, 1367–1377;
- 9pS. Nie, W. Li, B. Yu, J. Am. Chem. Soc. 2014, 136, 4157–4160;
- 9qS. Wang, J. Sun, Q. Zhang, X. Cao, Y. Zhao, G. Tang, B. Yu, Angew. Chem. Int. Ed. 2018, 57, 2884–2888; Angew. Chem. 2018, 130, 2934–2938;
- 9rS. Wang, Q. Zhang, Y. Zhao, J. Sun, W. Kang, F. Wang, H. Pan, G. Tang, B. Yu, Angew. Chem. Int. Ed. 2019, 58, 10558–10562; Angew. Chem. 2019, 131, 10668–10672;
- 9sJ. Fu, P. Xu, B. Yu, Chin. J. Chem. 2021, 39, 2679–2684.
- 10For recent medicinal chemistry studies on nucleoside antibiotics, see:
- 10aS. Ichikawa, Chem. Rec. 2016, 16, 1106–1115;
- 10bB. Patel, P. Ryan, V. Makwana, M. Zunk, S. Rudrawar, G. Grant, Eur. J. Med. Chem. 2019, 171, 462–474;
- 10cY. Ishizaki, Y. Takahashi, T. Kimura, M. Inoue, C. Hayashi, M. Igarashi, J. Antibiot. 2019, 72, 970–980;
- 10dS. Siricilla, K. Mitachi, B. Wan, S. G. Franzblau, M. Kurosu, J. Antibiot. 2015, 68, 271–278;
- 10eM. J. Fer, A. Bouhss, M. Patrão, L. Le Corre, N. Pietrancosta, A. Amoroso, B. Joris, D. Mengin-Lecreulx, S. Calvet-Vitale, C. Gravier-Pelletier, Org. Biomol. Chem. 2015, 13, 7193–7222;
- 10fD. Wiegmann, S. Koppermann, M. Wirth, G. Niro, K. Leyerer, C. Ducho, Beilstein J. Org. Chem. 2016, 12, 769–795;
- 10gA. Katsuyama, S. Ichikawa, Chem. Pharm. Bull. 2018, 66, 123–131;
- 10hB. Patel, R. V. Kerr, A. K. Malde, M. Zunk, T. D. H. Bugg, G. Grant, S. Rudrawar, ChemMedChem 2020, 15, 1429–1438;
- 10iD. Rejman, A. Rabatinová, A. R. Pombinho, S. Kovačková, R. Pohl, E. Zborníková, M. Kolář, K. Bogdanová, O. Nyč, H. Šanderová, T. Látal, P. Bartůnĕk, L. Krásný, J. Med. Chem. 2011, 54, 7884–7898;
- 10jA. T. Tran, E. E. Watson, V. Pujari, T. Conroy, L. J. Dowman, A. M. Giltrap, A. Pang, W. R. Wong, R. G. Linington, S. Mahapatra, J. Saunders, S. A. Charman, N. P. West, T. D. H. Bugg, J. Tod, C. G. Dowson, D. I. Roper, D. C. Crick, W. J. Britton, R. J. Payne, Nat. Commun. 2017, 8, 14414;
- 10kY. Terasawa, C. Sataka, T. Sato, K. Yamamoto, Y. Fukushima, C. Nakajima, Y. Suzuki, A. Katsuyama, T. Matsumaru, F. Yakushiji, S. Yokota, S. Ichikawa, J. Med. Chem. 2020, 63, 9803–9827;
- 10lM. T. C. Walvoort, V. Lukose, B. Imperiali, Chem. Eur. J. 2016, 22, 3856–3864;
- 10mN. P. J. Price, T. M. Hartman, J. Li, K. K. Velpula, T. A. Naumann, M. R. Guda, B. Yu, K. M. Bischoff, J. Antibiot. 2017, 70, 1070–1077;
- 10nJ. Hering, E. Dunevall, A. Snijder, P. Eriksson, M. A. Jackson, T. M. Hartman, R. Ting, H. Chen, N. P. J. Price, G. Brändén, M. Ek, ACS Chem. Biol. 2020, 15, 2885–2895.
- 11
- 11aR. Murakami, Y. Fujita, M. Kizuka, T. Kagawa, Y. Muramatsu, S. Miyakoshi, T. Takatsu, M. Inukai, J. Antibiot. 2008, 61, 537–544;
- 11bY. Fujita, R. Murakami, Y. Muramatsu, S. Miyakoshi, T. Takatsu, J. Antibiot. 2008, 61, 545–549.
- 12T. Shiraishi, M. Nishiyama, T. Kuzuyama, Org. Biomol. Chem. 2019, 17, 461–466.
- 13M. McErlean, X. Liu, Z. Cui, B. Gust, S. G. Van Lanen, Nat. Prod. Rep. 2021, 38, 1362–1407.
- 14P. Westerduin, G. H. Veeneman, G. A. van der Marel, J. H. van Boom, Tetrahedron Lett. 1986, 27, 6271–6274.
- 15J. Hansson, S. Oscarson, Curr. Org. Chem. 2000, 4, 535–564.
- 16A. V. Nikolaev, I. V. Botvinko, A. J. Ross, Carbohydr. Res. 2007, 342, 297–344.
- 17N. Oka, K. Sato, T. Wada, Trends Glycosci. Glycotechnol. 2012, 24, 152–168.
- 18D. Crich, Acc. Chem. Res. 2010, 43, 1144–1153.
- 19Y. Zhu, B. Yu, Chem. Eur. J. 2015, 21, 8771–8780.
- 20Y. Zhang, S. Knapp, J. Org. Chem. 2016, 81, 2228–2242.
- 21H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483–2547.
- 22Deposition Numbers 2132505 (for 12) and 2132510 (for 13) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 23B. A. Aleiwi, M. Kurosu, Tetrahedron Lett. 2012, 53, 3758–3762.
- 24L. Gan, R. L. Whistler, Carbohydr. Res. 1990, 206, 65–69.
- 25K. Bock, C. Pedersen, J. Chem. Soc. Perkin Trans. 2 1974, 293–297.
- 26P. Hobley, O. Howarth, R. N. Ibbett, Magn. Reson. Chem. 1996, 34, 755–760.
- 27R. R. Schmidt, W. Kinzy, Adv. Carbohydr. Chem. Biochem. 1994, 50, 21–123.
- 28J. Hering, E. Dunevall, M. Ek, G. Brändén, Drug Discovery Today 2018, 23, 1426–1435.
- 29E. H. Mashalidis, S.-Y. Lee, J. Mol. Biol. 2020, 432, 4946–4963.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.