Molecular and Spin Structures of a Through-Space Conjugated Triradical System
Dr. Takuya Kodama
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan
Current Address: Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871 Japan
Innovative Catalysis Science Division (ICS), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorMitsuya Aoba
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorCorresponding Author
Prof. Yasukazu Hirao
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorSamara Medina Rivero
Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071 Málaga, Spain
Search for more papers by this authorCorresponding Author
Prof. Juan Casado
Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071 Málaga, Spain
Search for more papers by this authorCorresponding Author
Prof. Takashi Kubo
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan
Innovative Catalysis Science Division (ICS), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorDr. Takuya Kodama
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan
Current Address: Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871 Japan
Innovative Catalysis Science Division (ICS), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorMitsuya Aoba
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorCorresponding Author
Prof. Yasukazu Hirao
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorSamara Medina Rivero
Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071 Málaga, Spain
Search for more papers by this authorCorresponding Author
Prof. Juan Casado
Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071 Málaga, Spain
Search for more papers by this authorCorresponding Author
Prof. Takashi Kubo
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan
Innovative Catalysis Science Division (ICS), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorAbstract
A through-space conjugated multi-phenalenyl triradical 1 a has been prepared and characterized. Partial occupancy of doubly degenerate molecular orbitals in 1 a leads to Jahn–Teller distortion, creating a molecular skeleton in which C2v doublet states are lower in energy than undistorted D3h doublet and quartet states. Triradical 1 a exists in an acute form in the solution state, whereas it adopts a preferred obtuse form in the solid state. The results of the investigation show that these two distorted forms are reversibly interconverted by thermal energy.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202200688-sup-0001-misc_information.pdf15 MB | Supporting Information |
ange202200688-sup-0001-TPP.cif49.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Nishide, K. Oyaizu, Science 2008, 319, 737–738;
- 1bK. Oyaizu, H. Nishide in Encyclopedia of Radicals in Chemistry, Biology and Materials, Vol. 4 (Eds.: C. Chatgilialoglu, A. Studer), Wiley, New York, 2012, chap. 71.
- 2
- 2aY. Morita, S. Nishida, T. Murata, M. Moriguchi, A. Ueda, M. Satoh, K. Arifuku, K. Sato, T. Takui, Nat. Mater. 2011, 10, 947–951;
- 2bS. Nishida, Y. Morita in Organic Redox Systems (Ed.: T. Nishinaga), Wiley, New York, 2016, chap. 6.
- 3
- 3aK. Tagami, M. Tsukada, J. Phys. Chem. B 2004, 108, 6441–6444;
- 3bM. Mas-Torrent, N. Crivillers, V. Mugnaini, I. Ratera, C. Rovira J Veciana, J. Mater. Chem. 2009, 19, 1691–1695;
- 3cS. Sanvito, Chem. Soc. Rev. 2011, 40, 3336–3355;
- 3dN. M. Gallagher, A. Olankitwanit, A. Rajca, J. Org. Chem. 2015, 80, 1291–1298.
- 4
- 4aM. Smeu, G. A. DiLabio, J. Phys. Chem. C 2010, 114, 17874–17879;
- 4bC. Herrmann, G. C. Solomon, M. A. Ratner, J. Am. Chem. Soc. 2010, 132, 3682–3684;
- 4cK. V. Raman, A. M. Kamerbeek, A. Mukherjee, N. Atodiresei, T. K. Sen, P. Lazić, V. Caciuc, R. Michel, D. Stalke, S. K. Mandal, S. Blügel, M. Münzenberg, J. S. Moodera, Nature 2013, 493, 509–513;
- 4dG. Hu, S. Xie, C. Wang, C. Timm, Beilstein J. Nanotechnol. 2017, 8, 1919–1931.
- 5
- 5aY. Yonekuta, K. Susuki, K. Oyaizu, K. Honda, H. Nishide, J. Am. Chem. Soc. 2007, 129, 14128–14129;
- 5bJ. Lee, E. Lee, S. Kim, G. S. Bang, D. A. Shultz, R. D. Schmidt, M. D. E. Forbes, H. Lee, Angew. Chem. Int. Ed. 2011, 50, 4414–4418; Angew. Chem. 2011, 123, 4506–4510.
- 6
- 6aR. Breslow, B. Juan, R. Q. Kluttz, C.-Z. Xia, Tetrahedron 1982, 38, 863–867;
- 6bJ. S. Miller, A. J. Epstein, W. M. Reiff, Chem. Rev. 1988, 88, 201–220;
- 6cR. Chiarelli, M. A. Novak, J. L. Tholence, Nature 1993, 363, 147–149;
- 6dA. Rajca, Chem. Rev. 1994, 94, 871–893;
- 6eT. Yoshitake, T. Ishida, Chem. Lett. 2016, 45, 391–393.
- 7A. Bajaj, M. E. Ali, Physica B+C 2020, 595, 412396.
- 8
- 8aM. Leo, Ber. Dtsch. Chem. Ges. 1937, 70, 1691–1695;
- 8bG. Schmauss, H. Baumgärtel, H. Zimmermann, Angew. Chem. Int. Ed. Engl. 1965, 4, 596–596; Angew. Chem. 1965, 77, 619–620;
- 8cG. Kothe, E. Ohmes, J. Brickmann, H. Zimmerrnann, Angew. Chem. Int. Ed. Engl. 1971, 10, 938–940; Angew. Chem. 1971, 83, 1015–1017.
- 9G. A. Russell, N. K. Suleman, J. Am. Chem. Soc. 1981, 103, 1560–1561.
- 10Y. Wu, M. D. Krzyaniak, J. F. Stoddart, M. R. Wasielewski, J. Am. Chem. Soc. 2017, 139, 2948–2951.
- 11
- 11aX. Lu, S. Lee, J. O. Kim, T. Y. Gopalakrishna, H. Phan, T. S. Herng, Z. Lim, Z. Zeng, J. Ding, D. Kim, J. Wu, J. Am. Chem. Soc. 2016, 138, 13048–13058;
- 11bX. Lu, S. Lee, Y. Hong, H. Phan, T. Y. Gopalakrishna, T. S. Herng, T. Tanaka, M. E. Sandoval-Salinas, W. Zeng, J. Ding, D. Casanova, A. Osuka, D. Kim, J. Wu, J. Am. Chem. Soc. 2017, 139, 13173–13183.
- 12R. Kurata, D. Sakamaki, M. Uebe, M. Kinoshita, T. Iwanaga, T. Matsumoto, A. Ito, Org. Lett. 2017, 19, 4371–4374.
- 13C. Shu, M. Pink, T. Junghoefer, E. Nadler, S. Rajca, M. B. Casu, A. Rajca, J. Am. Chem. Soc. 2021, 143, 5508–5518.
- 14T. Kubo, S. Miyazaki, T. Kodama, M. Aoba, Y. Hirao, H. Kurata, Chem. Commun. 2015, 51, 3801–3803.
- 15T. Kodama, Y. Hirao, T. Nishiuchi, T. Kubo, ChemPlusChem 2017, 82, 1006–1009.
- 16T. Kodama, S. Miyazaki, T. Kubo, ChemPlusChem 2019, 84, 599–602.
- 17H. A. Jahn, E. Teller, Proc. R. Soc. London Ser. A 1937, 161, 220–235.
- 18D. Doehnert J Koutecky, J. Am. Chem. Soc. 1980, 102, 1789–1796.
- 19
- 19aH.-J. Werner, P. J. Knowles, J. Chem. Phys. 1985, 82, 5053–5063;
- 19bP. J. Knowles, H.-J. Werner, Chem. Phys. Lett. 1985, 115, 259–267.
- 20
- 20aK. Goto, T. Kubo, K. Yamamoto, K. Nakasuji, K. Sato, D. Shiomi, T. Takui, M. Kubota, T. Kobayashi, K. Yakusi, J. Ouyang, J. Am. Chem. Soc. 1999, 121, 1619–1620;
- 20bS. Suzuki, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, J. Am. Chem. Soc. 2006, 128, 2530–2531.
- 21Deposition Number 2122253 (for 1 a) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 22J. P. Wagner, P. R. Schreiner, Angew. Chem. Int. Ed. 2015, 54, 12274–12296; Angew. Chem. 2015, 127, 12446–12471.
- 23There are three candidate structures for the high spin state with quartet: the excited quartet state in the acute or obtuse form (thermal vertical excitation) and the ground quartet state in the equilateral triangular form (isomerization reaction). The broadening of the ESR signal and the rise of the χmol T value in SQUID at high temperatures are attributed to the change in the distribution of these three states. However, the fitting analysis of the experimental data with the energy differences between many states as variables is quite difficult because only a small number of species is thermally excited in the measurable temperature range.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.