Regio- and Diastereoselective [3+2] Annulation of Aliphatic Aldimines with Alkenes by Scandium-Catalyzed β-C(sp3)−H Activation
Xuefeng Cong
Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorQingde Zhuo
Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorNa Hao
Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorZhenbo Mo
Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorGu Zhan
Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorMasayoshi Nishiura
Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorCorresponding Author
Zhaomin Hou
Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorXuefeng Cong
Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorQingde Zhuo
Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorNa Hao
Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorZhenbo Mo
Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorGu Zhan
Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorMasayoshi Nishiura
Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorCorresponding Author
Zhaomin Hou
Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorAbstract
Here we report for the first time the regio- and diastereoselective [3+2] annulation of a wide range of aliphatic aldimines with alkenes via the activation of an unactivated β-C(sp3)−H bond by half-sandwich scandium catalysts. This protocol offers a straightforward and atom-efficient route for the synthesis of a new family of multi-substituted aminocyclopentane derivatives from easily accessible aliphatic aldimines and alkenes. The annulation of aldimines with styrenes exclusively afforded the 5-aryl-trans-substituted 1-aminocyclopentane derivatives with excellent diastereoselectivity through the 2,1-insertion of a styrene unit. The annulation of aldimines with aliphatic alkenes selectively gave the 4-alkyl-trans-substituted 1-aminocyclopentane products in a 1,2-insertion fashion. A catalytic amount of an appropriate amine such as adamantylamine (AdNH2) or dibenzylamine (Bn2NH) showed significant effects on the catalyst activity and stereoselectivity.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202115996-sup-0001-200712cong_0m.cif427.7 KB | Supporting Information |
ange202115996-sup-0001-cong202105048s_0m.cif658.7 KB | Supporting Information |
ange202115996-sup-0001-cxf10821_0ma_a.cif692.2 KB | Supporting Information |
ange202115996-sup-0001-misc_information.pdf43.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aP. M. Dewick, Medicinal Natural Products, 3rd. ed., Wiley-VCH, Weinheim, 2009, pp. 311–420;
10.1002/9780470742761.ch6 Google Scholar
- 1b Chiral Drugs (Eds.: G.-Q. Lin, Q.-D. You, J.-F. Cheng), Wiley, Weinheim, 2011;
10.1002/9781118075647 Google Scholar
- 1cV. Froidevaux, C. Negrell, S. Caillol, J.-P. Pascault, B. Boutevin, Chem. Rev. 2016, 116, 14181–14224;
- 1dA. Saeed, G. M. Vaught, K. Gavardinas, D. Matthews, J. E. Green, P. G. Losada, H. A. Bullock, N. A. Calvert, N. J. Patel, S. A. Sweetana, V. Krishnan, J. W. Henck, J. G. Luz, Y. Wang, P. Jadhav, J. Med. Chem. 2016, 59, 750–755;
- 1eP.-C. Wang, J.-M. Fang, K.-C. Tsai, S.-Y. Wang, W.-I. Huang, Y.-C. Tseng, Y.-S. E. Cheng, T.-J. R. Cheng, C.-H. Wong, J. Med. Chem. 2016, 59, 5297–5310;
- 1fJ. L. Gilmore, H.-Y. Xiao, T. G. M. Dhar, M. G. Yang, Z. Xiao, J. Xie, L. D. Lehman-McKeeman, L. Gong, H. Sun, L. Lecureux, C. Chen, D.-R. Wu, M. Dabros, X. Yang, T. L. Taylor, X. D. Zhou, E. M. Heimrich, R. Thomas, K. W. McIntyre, V. Borowski, B. M. Warrack, Y. Li, H. Shi, P. C. Levesque, Z. Yang, A. M. Marino, G. Cornelius, C. J. D'Arienzo, A. Mathur, R. Rampulla, A. Gupta, B. Pragalathan, D. R. Shen, M. E. Cvijic, L. M. Salter-Cid, P. H. Carter, A. J. Dyckman, J. Med. Chem. 2019, 62, 2265–2285;
- 1gS. Urban, P. D. Leone, A. R. Carroll, G. A. Fechner, J. Smith, J. N. A. Hooper, R. J. Quinn, J. Org. Chem. 1999, 64, 731–735;
- 1hM. Gianotti, M. Botta, S. Brough, R. Carletti, E. Castiglioni, C. Corti, M. Dal-Cin, S. D. Fratte, D. Korajac, M. Lovric, G. Merlo, M. Mesic, F. Pavone, L. Piccoli, S. Rast, M. Roscic, A. Sava, M. Smehil, L. Stasi, A. Togninelli, M. J. Wigglesworth, J. Med. Chem. 2010, 53, 7778–7795;
- 1iW. F. M. van Bever, A. G. Knaeps, J. J. M. Willems, B. K. F. Hermans, P. A. J. Janssen, J. Med. Chem. 1973, 16, 394–397.
- 2Selected reviews on the catalytic functionalization of C(sp3)−H bonds:
- 2aJ. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754–8786;
- 2bY. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247–9301;
- 2cS. Rej, Y. Ano, N. Chatani, Chem. Rev. 2020, 120, 1788–1887;
- 2dC. Cheng, J. F. Hartwig, Chem. Rev. 2015, 115, 8946–8975;
- 2eT. G. Saint-Denis, R.-Y. Zhu, G. Chen, Q.-F. Wu, J.-Q. Yu, Science 2018, 359, 759;
- 2fO. Baudoin, Chem. Soc. Rev. 2011, 40, 4902–4911;
- 2gB. Liu, A. M. Romine, C. Z. Rubel, K. M. Engle, B.-F. Shi, Chem. Rev. 2021, https://doi.org/10.1021/acs.chemrev.1c00519;
- 2hM. Font, M. Gulías, J. Luis Mascareñas, Angew. Chem. Int. Ed. 2021, https://doi.org/10.1002/anie.202112848; Angew. Chem. 2021, https://doi.org/10.1002/ange.202112848.
- 3Selected reviews on transition-metal-catalyzed C−H alkylation with alkenes:
- 3aZ. Dong, Z. Ren, S. J. Thompson, Y. Xu, G. Dong, Chem. Rev. 2017, 117, 9333–9403;
- 3bD. F. Fernández, J. L. Mascareñas, F. López, Chem. Soc. Rev. 2020, 49, 7378–7405.
- 4J. R. Hummel, J. A. Boerth, J. A. Ellman, Chem. Rev. 2017, 117, 9163–9227.
- 5Selected examples of catalytic [3+2] annulation of aromatic imines with C=C bonds via C(sp2)−H activation:
- 5aD. N. Tran, N. Cramer, Angew. Chem. Int. Ed. 2010, 49, 8181–8184; Angew. Chem. 2010, 122, 8357–8360;
- 5bT. Nishimura, Y. Ebe, T. Hayashi, J. Am. Chem. Soc. 2013, 135, 2092–2095;
- 5cW. P. Liu, D. Zell, M. John, L. Ackermann, Angew. Chem. Int. Ed. 2015, 54, 4092–4096; Angew. Chem. 2015, 127, 4165–4169;
- 5dT. Nishimura, M. Nagamoto, Y. Ebe, T. Hayashi, Chem. Sci. 2013, 4, 4499–4504;
- 5eB. Liu, P. Hu, Y. Zhang, Y. Li, D. Bai, X. Li, Org. Lett. 2017, 19, 5402–5405;
- 5fY.-F. Liang, V. Müller, W. Liu, A. Münch, D. Stalke, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 9415–9419; Angew. Chem. 2017, 129, 9543–9547;
- 5gB. Chaudhary, P. Auti, S. D. Shinde, P. A. Yakkala, D. Giri, S. Sharma, Org. Lett. 2019, 21, 2763–2767;
- 5hX. Cong, G. Zhan, Z. Mo, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 2020, 142, 5531–5537;
- 5iY. Kuninobu, Y. Nishina, K. Okaguchi, M. Shouho, K. Takai, Bull. Chem. Soc. Jpn. 2008, 81, 1393–1401;
- 5jY. Kuninobu, P. Yu, K. Takai, Org. Lett. 2010, 12, 4274–4276.
- 6Recent examples on palladium-catalyzed annulation of amides with C=C bonds via C(sp3)−H activation:
- 6aH. Park, J.-Q. Yu, J. Am. Chem. Soc. 2020, 142, 16552–16556;
- 6bB. Cendón, M. Font, J. L. Mascareñas, M. Gulías, ACS Catal. 2020, 10, 3425–3430;
- 6cX. Vidal, J. L. Mascareñas, M. Gulías, Org. Lett. 2021, 23, 5323–5328.
- 7Selected reviews:
- 7aM. Nishiura, Z. Hou, Nat. Chem. 2010, 2, 257–268;
- 7bM. Nishiura, F. Guo, Z. Hou, Acc. Chem. Res. 2015, 48, 2209–2220;
- 7cP. L. Arnold, M. W. MacMullon, J. Rieb, F. E. Kühn, Angew. Chem. Int. Ed. 2015, 54, 82–100; Angew. Chem. 2015, 127, 84–103;
- 7dY. Yang, M. Nishiura, H. Wang, Z. Hou, Coord. Chem. Rev. 2018, 376, 506–532;
- 7eP. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192–2452.
- 8Selected examples:
- 8aB.-T. Guan, Z. Hou, J. Am. Chem. Soc. 2011, 133, 18086–18089;
- 8bB.-T. Guan, B. Wang, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2013, 52, 4418–4421; Angew. Chem. 2013, 125, 4514–4517;
- 8cG. Song, W. W. N. O, Z. Hou, J. Am. Chem. Soc. 2014, 136, 12209–12212;
- 8dG. Song, B. Wang, M. Nishiura, Z. Hou, Chem. Eur. J. 2015, 21, 8394–8398;
- 8eG. Song, G. Luo, J. Oyamada, Y. Luo, Z. Hou, Chem. Sci. 2016, 7, 5265–5270;
- 8fA. E. Nako, J. Oyamada, M. Nishiura, Z. Hou, Chem. Sci. 2016, 7, 6429;
- 8gX. Shi, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 2016, 138, 6147–6150;
- 8hH. Teng, Y. Luo, B. Wang, L. Zhang, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2016, 55, 15406–15410; Angew. Chem. 2016, 128, 15632–15636;
- 8iH.-L. Teng, Y. Luo, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 2017, 139, 16506–16509;
- 8jY. Luo, H. Teng, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2017, 56, 9207–9210; Angew. Chem. 2017, 129, 9335–9338;
- 8kC. Wang, G. Luo, M. Nishiura, G. Song, A. Yamamoto, Y. Luo, Z. Hou, Sci. Adv. 2017, 3, e1701011;
- 8lY. Luo, Y. Ma, Z. Hou, J. Am. Chem. Soc. 2018, 140, 114–117;
- 8mG. Zhan, H. Teng, Y. Luo, S. Lou, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2018, 57, 12342–12346; Angew. Chem. 2018, 130, 12522–12526;
- 8nC. Xue, Y. Luo, H. Teng, Y. Ma, M. Nishiura, Z. Hou, ACS Catal. 2018, 8, 5017–5022;
- 8oY. Luo, H. Teng, C. Xue, M. Nishiura, Z. Hou, ACS Catal. 2018, 8, 8027–8032;
- 8pH. Wang, Y. Yang, M. Nishiura, Y. Higaki, A. Takahara, Z. Hou, J. Am. Chem. Soc. 2019, 141, 3249–3257;
- 8qS.-J. Lou, Z. Mo, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 2020, 142, 1200–1205;
- 8rS. Lou, L. Zhang, Y. Luo, M. Nishiura, G. Luo, Y. Luo, Z. Hou, J. Am. Chem. Soc. 2020, 142, 18128–18137;
- 8sW. Xu, H. Teng, Y. Luo, S. Lou, M. Nishiura, Z. Hou, Chem. Asian J. 2020, 15, 753–756;
- 8tK. Nishii, G. Zhou, Y. Saito, A. Yamamoto, M. Nishiura, Y. Luo, Z. Hou, Bull. Chem. Soc. Jpn. 2021, 94, 1285–1291;
- 8uS. Lou, Q. Zhuo, M. Nishiura, G. Luo, Z. Hou, J. Am. Chem. Soc. 2021, 143, 2470–2476;
- 8vY. Yang, H. Wang, L. Huang, M. Nishiura, Y. Higaki, Z. Hou, Angew. Chem. Int. Ed. 2021, 60, 26192–26198; Angew. Chem. 2021, 133, 26396–26402;
- 8wS. Lou, G. Luo, S. Yamaguchi, K. An, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 2021, 143, 20462–20471.
- 9The analogous Y, Gd, Sm, Ho and Lu catalysts were less effective. Late transition metal catalysts such as Ni(COD)2, Pd(OAc)2, and Rh(COD)Cl did not show activity. See Supporting Information for more details.
- 10X. Li, M. Nishiura, K. Mori, T. Mashiko, Z. Hou, Chem. Commun. 2007, 4137–4139.
- 11The similar Cp ligand influence on the catalytic activity of half-sandwich scandium catalysts was also observed in other transformations. For examples, see: refs. [5h] and [8a–f,l,q,r].
- 12For examples of rare-earth amido-promoted C−H transformations, see:
- 12aH. Nagae, Y. Shibata, H. Tsurugi, K. Mashima, J. Am. Chem. Soc. 2015, 137, 640–643;
- 12bA. Kundu, M. Inoue, H. Nagae, H. Tsurugi, K. Mashima, J. Am. Chem. Soc. 2018, 140, 7332–7342.
- 13For more details of amine additive influences, see Supporting Information.
- 14In the case of trans-3 ha, formation of polystyrene was also observed.
- 15In the case of N-cyclohexyl aldimines bearing an α-hydrogen atom, the aldimine sp2 C(NCy)−H alkylation with styrene was observed. Further studies on this transformation are in progress and will be reported elsewhere in due course.
- 16Deposition Numbers 2087777 (for trans-3pa), 2087778 (for trans-3aaa), 2087779 (for trans-3aca) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 17Acrylates such as n-butyl acrylate and tert-butyl acrylate are not suitable for this transformation (see Table S10 in Supporting Information) probably because of the strong coordination of the carbonyl group to the Sc center which may hamper the C−H activation of the aldimine substrate.
- 18For computational studies on the difference in insertion mode between aliphatic and aromatic alkenes, see:
- 18aF. Liu, G. Luo, Z. Hou, Y. Luo, Organometallics 2017, 36, 1557–1565;
- 18bG. Luo, F. Liu, Y. Luo, G. Zhou, X. Kang, Z. Hou, L. Luo, Organometallics 2019, 38, 1887–1896.
- 19P. Wang, G. Luo, J. Yang, X. Cong, Z. Hou, Y. Luo, J. Org. Chem. 2021, 86, 4236–4244.
- 20For a possible mechanism of the annulation of 1 a with alkenes in the absence of an amine, see Supporting Information.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.