TMSCF2Br-Enabled Fluorination–Aminocarbonylation of Aldehydes: Modular Access to α-Fluoroamides
An Liu
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorProf. Dr. Chuanfa Ni
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorDr. Qiqiang Xie
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jinbo Hu
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorAn Liu
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorProf. Dr. Chuanfa Ni
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorDr. Qiqiang Xie
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jinbo Hu
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorAbstract
A protocol for the modular assembly of the α-fluoroamide motif has been developed, which provides a practical method for the efficient synthesis of structurally diverse α-fluoroamides from easily available aldehydes and tertiary amines through a three-component fluorination–aminocarbonylation process. The key to the success of this process is taking advantage of the multiple roles of the unique difluorocarbene reagent TMSCF2Br (TMS=trimethylsilyl). The mechanism of the process involves the 1,2-fluorine and oxygen migrations of the in situ formed TMS-protected α-aminodifluoromethyl carbinol intermediates, which represents a new type of deoxyfluorination reaction.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202115467-sup-0001-misc_information.pdf19.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science (Eds.: A. Greenberg, C. M. Breneman, J. F. Liebman), Wiley, New York, 2000.
- 2
- 2aJ. Clayden, Nature 2019, 573, 37;
- 2bT. L. Marcha, M. R. Johnston, P. J. Duggan, J. Gardiner, Chem. Biodiversity 2012, 9, 2410;
- 2cC. R. S. Briggs, D. O'Hagan, J. A. K. Howard, D. S. Yufit, J. Fluorine Chem. 2003, 119, 9.
- 3For examples,
- 3aJ. Saadi, H. Wennemers, Nat. Chem. 2016, 8, 276;
- 3bL. Brewitz, F. A. Arteaga, L. Yin, K. Alagiri, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2015, 137, 15929;
- 3cV. Peddie, R. J. Butcher, W. T. Robinson, M. C. J. Wilce, D. A. K. Traore, A. D. Abell, Chem. Eur. J. 2012, 18, 6655;
- 3dD. S. Reddy, N. Shibata, J. Nagai, S. Nakamura, T. Toru, S. Kanemasa, Angew. Chem. Int. Ed. 2008, 47, 164; Angew. Chem. 2008, 120, 170;
- 3eK. Tenza, J. S. Northen, D. O'Hagan, A. M. Z. Slawin, Beilstein J. Org. Chem. 2005, 1, 13.
- 4For examples, see:
- 4aY.-J. Yu, F.-L. Zhang, T.-Y. Peng, C.-L. Wang, J. Cheng, C. Chen, K. N. Houk, Y.-F. Wang, Science 2021, 371, 1232;
- 4bZ.-T. He, X. Jiang, J. F. Hartwig, J. Am. Chem. Soc. 2019, 141, 13066;
- 4cE. Gupta, R. Kant, K. Mohanan, Org. Lett. 2017, 19, 6016;
- 4dA. G. Myers, J. K. Barbay, B. Zhong, J. Am. Chem. Soc. 2001, 123, 7207.
- 5
- 5aX. Dong, W. Yang, W. Hu, J. Sun, Angew. Chem. Int. Ed. 2015, 54, 660; Angew. Chem. 2015, 127, 670;
- 5bF. Buckingham, A. K. Kirjavainen, S. Forsback, A. Krzyczmonik, T. Keller, I. M. Newington, M. Glaser, S. K. Luthra, O. Solin, V. Gouverneur, Angew. Chem. Int. Ed. 2015, 54, 13366; Angew. Chem. 2015, 127, 13564;
- 5cP. Wheeler, H. U. Vora, T. Rovis, Chem. Sci. 2013, 4, 1674;
- 5dS. Y. Lee, S. Neufeind, G. C. Fu, J. Am. Chem. Soc. 2014, 136, 8899;
- 5eD. H. Paull, M. T. Scerba, E. Alden-Danforth, L. R. Widger, T. Lectka, J. Am. Chem. Soc. 2008, 130, 17260.
- 6T. Honjo, R. J. Phipps, V. Rauniyar, F. D. Toste, Angew. Chem. Int. Ed. 2012, 51, 9684; Angew. Chem. 2012, 124, 9822.
- 7For examples, see:
- 7aK. Ishihara, K. Nishimura, K. Yamakawa, Angew. Chem. Int. Ed. 2020, 59, 17641; Angew. Chem. 2020, 132, 17794;
- 7bP. Adler, C. J. Teskey, D. Kaiser, M. Holy, H. H. Sitte, N. Maulide, Nat. Chem. 2019, 11, 329;
- 7cT. Suzuki, Y. Hamashima, M. Sodeoka, Angew. Chem. Int. Ed. 2007, 46, 5435; Angew. Chem. 2007, 119, 5531.
- 8
- 8aT. Nishikata, S. Ishida, R. Fujimoto, Angew. Chem. Int. Ed. 2016, 55, 10008; Angew. Chem. 2016, 128, 10162;
- 8bS. Mizuta, K. Kitamura, A. Kitagawa, T. Yamaguchi, T. Ishikawa, Chem. Eur. J. 2021, 27, 5930.
- 9For reviews, see:
- 9aD. L. S. Brahms, W. P. Dailey, Chem. Rev. 1996, 96, 1585;
- 9bW. R. Dolbier Jr., M. A. Battiste, Chem. Rev. 2003, 103, 1071;
- 9cM. Fedoryński, Chem. Rev. 2003, 103, 1099;
- 9dC. Ni, J. Hu, Synthesis 2014, 46, 842;
- 9eW. Zhang, Y. Wang, Tetrahedron Lett. 2018, 59, 1301;
- 9fX. Wang, X. Wang, J. Wang, Tetrahedron 2019, 75, 949;
- 9gA. D. Dilman, V. V. Levin, Acc. Chem. Res. 2018, 51, 1272;
- 9hX. Ma, Q. Song, Chem. Soc. Rev. 2020, 49, 9197;
- 9iW. Zhou, W.-J. Pan, J. Chen, M. Zhang, J.-H. Lin, W. Cao, J.-C. Xiao, Chem. Commun. 2021, 57, 9316.
- 10
- 10aK. Morimoto, K. Makino, G. Sakata, J. Fluorine Chem. 1992, 59, 417;
- 10bC.-M. Hu, F.-L. Qing, C.-X. Shen, J. Chem. Soc. Perkin Trans. 1 1993, 335;
- 10cG. Zhang, Q. Shi, M. Hou, K. Yang, S. Wang, S. Wang, W. Li, C. Li, J. Qiu, H. Xu, L. Zhou, C. Wang, S.-J. Li, Y. Lan, Q. Song, CCS Chem. 2021, 3, 1613.
- 11
- 11aL. Li, C. Ni, F. Wang, J. Hu, Nat. Commun. 2016, 7, 13320;
- 11bX. Wang, F. Wang, F. Huang, C. Ni, J. Hu, Org. Lett. 2021, 23, 1764.
- 12For reviews, see:
- 12a“Fluoroolefin-Amine Adduct Deoxofluorination”: V. Petrov in Fluorination. Synthetic Organofluorine Chemistry (Eds.: J. Hu, T. Umemoto), Springer, Singapore, 2020;
- 12b“α,α-Difluorobenzylamines Deoxofluorination”: L. Li, J. Hu in Fluorination. Synthetic Organofluorine Chemistry (Eds.: J. Hu, T. Umemoto), Springer, Singapore, 2020;
- 12c“PhenoFluor, PhenoFluorMix, and AlkylFluor”: T. Ritter, J. Chen in Encyclopedia of Reagents for Organic Synthesis (Eds.: A. B. Charette, J. W. Bode, T. Rovis, R. A. Shenvi), Wiley, Hoboken, 2021.
- 13The synthesis of heteroaryl-N-difluoromethyl carbinols via nucleophilic addition of heteroaryl-N-difluoromethyl anions, generated via debromination, deprotonation and desilylation, to carbonyl compounds is known; however, the corresponding carbionls are stable and reluctant to undergo self-deoxyfluorination, see:
- 13aL. M. Yagupolskii, D. V. Fedyuk, Tetrahedron Lett. 2000, 41, 2265;
- 13bG. Bissky, V. I. Staninets, A. A. Kolomeitsev, G.-V. Röschenthaler, Synlett 2001, 374;
- 13cG. Bissky, G.-V. Röschenthaler, E. Lork, J. Barten, M. Médebielle, V. Staninets, A. A. Kolomeitsev, J. Fluorine Chem. 2001, 109, 173;
- 13dJ. Y. Chai, H. Cha, H. B. Kim, D. Y. Chi, Tetrahedron 2020, 76, 131370.
- 14For recent examples, see:
- 14aQ. Xie, Z. Zhu, C. Ni, J. Hu, Org. Lett. 2019, 21, 9138;
- 14bT. Mita, Y. Harabuchi, S. Maeda, Chem. Sci. 2020, 11, 7569;
- 14cH. Hayashi, H. Takano, H. Katsuyama, Y. Harabuchi, S. Maeda, T. Mita, Chem. Eur. J. 2021, 27, 10040.
- 15For examples, see:
- 15aA. Polley, G. Bairy, P. Das, R. Jana, Adv. Synth. Catal. 2018, 360, 4161;
- 15bV. P. Mehta, M. F. Greaney, Org. Lett. 2013, 15, 5036;
- 15cW. Zhang, F. Wang, J. Hu, Org. Lett. 2009, 11, 2109;
- 15dX. Ma, S. Denga, Q. Song, Org. Chem. Front. 2018, 5, 3505;
- 15eY.-X. Si, P.-F. Zhu, S.-L. Zhang, Org. Lett. 2020, 22, 9086.
- 16For reviews, see:
- 16aD. J. Burton, Z.-Y. Yang, W. Qiu, Chem. Rev. 1996, 96, 1641;
- 16bJ.-H. Lin, J.-C. Xiao, Acc. Chem. Res. 2020, 53, 1498.
- 17For examples, see:
- 17aF. Wang, L. Li, C. Ni, J. Hu, Beilstein J. Org. Chem. 2014, 10, 344;
- 17bV. V. Levin, A. L. Trifonov, A. A. Zemtsov, M. I. Struchkova, D. E. Arkhipov, A. D. Dilman, Org. Lett. 2014, 16, 6256;
- 17cV. O. Smirnov, A. D. Volodin, A. A. Korlyukov, A. D. Dilman, Angew. Chem. Int. Ed. 2020, 59, 12428; Angew. Chem. 2020, 132, 12528;
- 17dW. C. Fu, T. F. Jamison, Angew. Chem. Int. Ed. 2020, 59, 13885; Angew. Chem. 2020, 132, 13989;
- 17eA. L. Trifonov, A. D. Dilman, Org. Lett. 2021, 23, 6977.
- 18The adducts of difluomethylene azomethine ylides (1,3-dipoles) with carbonyl groups are not suitable for further self-deoxyfluorination, see:
- 18aM. S. Novikov, A. F. Khlebnikov, A. Krebs, R. R. Kostikov, Eur. J. Org. Chem. 1998, 133;
10.1002/(SICI)1099-0690(199801)1998:1<133::AID-EJOC133>3.0.CO;2-U CAS Web of Science® Google Scholar
- 18bM. S. Novikov, A. F. Khlebnikov, E. S. Sidorina, R. R. Kostikov, J. Chem. Soc. Perkin Trans. 1 2000, 231;
- 18cM. S. Novikov, I. V. Voznyi, A. F. Khlebnikov, J. Kopf, R. R. Kostikov, J. Chem. Soc. Perkin Trans. 1 2002, 1628;
- 18dI. V. Voznyi, M. S. Novikov, A. F. Khlebnikov, J. Kopf, R. R. Kostikov, Russ. J. Org. Chem. 2004, 40, 199;
- 18eM. S. Novikov, A. A. Amer, A. F. Khlebnikov, Tetrahedron Lett. 2006, 47, 639;
- 18fK. A. Khistiaev, M. S. Novikov, A. F. Khlebnikov, J. Magull, Tetrahedron Lett. 2008, 49, 1237;
- 18gM. S. Novikov, A. F. Khlebnikov, K. A. Khistyaev, I. Magull, Russ. Chem. Bull. Int. Ed. 2008, 57, 1070;
- 18hK. R. Gaisina, A. F. Khlebnikov, M. S. Novikov, Org. Biomol. Chem. 2017, 15, 4579.
- 19The intramolecular addition reaction can readily take place without further stabilizing the 1,4-zwitterion adducts (see Ref. [10c]); however, the reported reaction conditions are not applicable for three-component synthesis of α-fluoroamides.
- 20The removal of one of the N-substituents from quaternary ammonium salts with nucleophiles usually proceeds under harsh conditions, for examples, see:
- 20aY. Kim, J. Heo, D. Kim, S. Chang, S. Seo, Nat. Commun. 2020, 11, 4761;
- 20bJ. Su, X. Ma, Z. Ou, Q. Song, ACS Cent. Sci. 2020, 6, 1819;
- 20cJ. Su, X. Hu, H. Huang, Y. Guo, Q. Song, Nat. Commun. 2021, 12, 4986;
- 20dH. Sheng, J. Su, X. Li, X. Li, Q. Song, Org. Lett. 2021, 23, 7781.
- 21
- 21aF. Wang, W. Zhang, J. Zhu, H. Li, K.-W. Huang, J. Hu, Chem. Commun. 2011, 47, 2411;
- 21bL. Li, F. Wang, C. Ni, J. Hu, Angew. Chem. Int. Ed. 2013, 52, 12390; Angew. Chem. 2013, 125, 12616;
- 21cQ. Xie, C. Ni, R. Zhang, L. Li, J. Rong, J. Hu, Angew. Chem. Int. Ed. 2017, 56, 3206; Angew. Chem. 2017, 129, 3254;
- 21dQ. Xie, Z. Zhu, L. Li, C. Ni, J. Hu, Angew. Chem. Int. Ed. 2019, 58, 6405; Angew. Chem. 2019, 131, 6471;
- 21eR. Zhang, Q. Li, Q. Xie, C. Ni, J. Hu, Chem. Eur. J. 2021, 27, 17773–17779.
- 22For recent examples, see:
- 22aRef. [17e];
- 22bY. Jia, Y. Yuan, J. Huang, Z.-X. Jiang, Z. Yang, Org. Lett. 2021, 23, 2670;
- 22cR.-Y. Yang, H. Wang, B. Xu, Chem. Commun. 2021, 57, 4831;
- 22dZ. Zhu, V. Krishnamurti, X. Ispizua-Rodriguez, C. Barrett, G. K. S. Prakash, Org. Lett. 2021, 23, 6494;
- 22eRef. [20a];
- 22fX. Liu, D. Du, S. Li, X. Wang, C. Xu, M. Wang, Adv. Synth. Catal. 2020, 362, 5135;
- 22gR. Zhang, Z. Zhang, K. Wang, J. Wang, J. Org. Chem. 2020, 85, 9791;
- 22hR. Zhang, Z. Zhang, Q. Zhou, L. Yu, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 5744; Angew. Chem. 2019, 131, 5800;
- 22iJ. Wang, E. Tokunaga, N. Shibata, Chem. Commun. 2018, 54, 8881.
- 23J. P. Krise, R. Oliyai, Prodrugs of Amines in: Prodrugs. Biotechnology: Pharmaceutical Aspects, Vol. V (Eds.: V. J. Stella, R. T. Borchardt, M. J. Hageman, R. Oliyai, H. Maag, J. W. Tilley), Springer, New York, 2007, pp. 801–831.
- 24B. Commare, E. Schmitt, F. Aribi, A. Panossian, J.-P. Vors, S. Pazenok, F. R. Leroux, Molecules 2017, 22, 977.
- 25T. Luo, R. Zhang, W. Zhang, X. Shen, T. Umemoto, J. Hu, Org. Lett. 2014, 16, 888.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.