Hindered Tetraphenylethylene Helicates: Chiral Fluorophores with Deep-Blue Emission, Multiple-Color CPL, and Chiral Recognition Ability
Ming Hu
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorFeng-Ying Ye
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCong Du
Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Weizhou Wang
College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934 China
Search for more papers by this authorWei Yu
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorProf. Dr. Minghua Liu
Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yan-Song Zheng
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorMing Hu
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorFeng-Ying Ye
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCong Du
Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Weizhou Wang
College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934 China
Search for more papers by this authorWei Yu
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorProf. Dr. Minghua Liu
Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yan-Song Zheng
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorAbstract
New hindered tetraphenylethylene (TPE) helicates with substitution at 2,6-position of phenyl rings were designed and synthesized. Due to the increased hindrance, the TPE helicates emit strong deep-blue to violet fluorescence both in the solid state and in solution, and could be resolved into enantiomers that emit strong and multicolor circularly polarized luminescence (CPL), and exhibit a high enantioselective recognition of chiral tartaric acid and its derivatives. Surprisingly, the derived helicate tetramines possess amino groups with an unpredented planar structure and sp2-hybridized nitrogen, arousing the change between AIE effect and ACQ phenomenon through photoinduced electron transfer (PET). With advantages of short synthetic route, many modification positions, deep-blue to violet emission, wide CPL tuning, and high chiral recognition ability, the hindered TPE helicates show broad prospects as chiral materials.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202115216-sup-0001-misc_information.pdf4.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. M. Brunel, Chem. Rev. 2005, 105, 857–898.
- 2Y. Shen, C.-F. Chen, Chem. Rev. 2012, 112, 1463–1535.
- 3T. Verbiest, S. V. Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. J. Katz, A. Persoons, Science 1998, 282, 913–915.
- 4B. L. Feringa, Angew. Chem. Int. Ed. 2017, 56, 11060–11078; Angew. Chem. 2017, 129, 11206–11226.
- 5J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718–11940.
- 6H. T. Feng, Y. X. Yuan, J. B. Xiong, Y. S. Zheng, B. Z. Tang, Chem. Soc. Rev. 2018, 47, 7452–7476.
- 7Nitti, C. Botta, A. Forni, E. Cariati, E. Lucenti, D. Pasini, CrystEngComm 2020, 22, 7782–7785.
- 8A. Nitti, F. Villafiorita-Monteleone, A. Pacini, C. Botta, T. Virgili, A. Forni, E. Cariati, M. Boiocchif, D. Pasini, Faraday Discuss. 2017, 196, 143–161.
- 9T. Virgili, A. Forni, E. Cariati, D. Pasini, C. Botta, J. Phys. Chem. C 2013, 117, 27161–27166.
- 10A. Nitti, D. Pasini, Adv. Mater. 2020, 32, 1908021.
- 11M. Hu, H.-T. Feng, Y.-X. Yuan, Y.-S. Zheng, B.-Z. Tang, Coord. Chem. Rev. 2020, 416, 213329.
- 12M. Hu, Y.-X. Yuan, W. Wang, D.-M. Li, H.-C. Zhang, B.-X. Wu, M. Liu, Y.-S. Zheng, Nat. Commun. 2020, 11, 161.
- 13K. Tanaka, D. Fujimoto, A. Altreuther, T. Oeser, H. Irngartinger, F. Toda, J. Chem. Soc. Perkin Trans. 2 2000, 2115–2120.
- 14T. Kawasaki, M. Nakaoda, N. Kaito, T. Sasagawa, K. Soai, Origins Life Evol. Biospheres 2010, 40, 65–78.
- 15Y.-J. Jin, H. Kim, J. J. Kim, N. H. Heo, J. W. Shin, M. Teraguchi, T. Kaneko, T. Aoki, G. Kwak, Cryst. Growth Des. 2016, 16, 2804–2809.
- 16M. Hu, F.-Y. Ye, C. Du, W. Wang, T.-T. Zhou, M.-L. Gao, M. Liu, Y.-S. Zheng, ACS Nano 2021, 15, 16673–16682.
- 17J.-B. Xiong, H.-T. Feng, J.-P. Sun, W.-Z. Xie, D. Yang, M.-H. Liu, Y.-S. Zheng, J. Am. Chem. Soc. 2016, 138, 11469–11472.
- 18Y.-X. Yuan, M. Hu, K.-R. Zhang, T.-T. Zhou, S. Wang, M. Liu, Y.-S. Zheng, Mater. Horiz. 2020, 7, 3209–3216.
- 19H. Qu, Y. Wang, Z. Li, X. Wang, H. Fang, Z. Tian, X. Cao, J. Am. Chem. Soc. 2017, 139, 18142–18145.
- 20A. Monkman, ACS Appl. Mater. Interfaces 2021, https://doi.org/10.1021/acsami.1c09189.
- 21J. Huang, N. Sun, P. Chen, R. Tang, Q. Li, D. Ma, Z. Li, Chem. Commun. 2014, 50, 2136–2138.
- 22D. Liu, J. De, H. Gao, S. Ma, Q. Ou, S. Li, Z. Qin, H. Dong, Q. Liao, B. Xu, Q. Peng, Z. Shuai, W. Tian, H. Fu, X. Zhang, Y. Zhen, W. Hu, J. Am. Chem. Soc. 2020, 142, 6332–6339.
- 23X.-F. Duan, J. Zeng, J.-W. Lü, Z.-B. Zhang, J. Org. Chem. 2006, 71, 9873–9876.
- 24M. Zhang, Y. Yao, P. J. Stang, W. Zhao, Angew. Chem. Int. Ed. 2020, 59, 20090–20098; Angew. Chem. 2020, 132, 20265–20273.
- 25E. Zimmerman, D. H. Paskovich, J. Am. Chem. Soc. 1964, 86, 2149–2160.
- 26E. Gur, Y. Kaida, Y. Okamoto, S. E. Biali, Z. Rappoport, J. Org. Chem. 1992, 57, 3689–3693.
- 27J. S. Kim, D. T. Quang, Chem. Rev. 2007, 107, 3780–3799.
- 28X. Tian, L. C. Murfin, L. Wu, S. E. Lewis, T. D. James, Chem. Sci. 2021, 12, 3406–3426.
- 29Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899–4031.
- 30W. Rettig, Angew. Chem. Int. Ed. Engl. 1986, 25, 971–988; Angew. Chem. 1986, 98, 969–986.
- 31D. Liese, G. Haberhauer, Isr. J. Chem. 2018, 58, 813–826.
- 32Y.-X. Yuan, B.-X. Wu, J.-B. Xiong, H.-C. Zhang, M. Hu, Y.-S. Zheng, Dye Pigm. 2019, 170, 107556.
- 33M. Jiang, X. Gu, J. W. Y. Lam, Y. Zhang, R. T. K. Kwok, K. S. Wong, B. Z. Tang, Chem. Sci. 2017, 8, 5440–5446.
- 34C. Cao, X. Liu, Q. Qiao, M. Zhao, W. Yin, D. Mao, H. Zhang, Z. Xu, Chem. Commun. 2014, 50, 15811–15814.
- 35S. Huang, J. Ding, A. Bi, K. Yu, W. Zeng, Adv. Opt. Mater. 2021, 9, 2100832.
- 36S. Liu, X. Zhou, H. Zhang, H. Ou, J. W. Y. Lam, Y. Liu, L. Shi, D. Ding, B. Z. Tang, J. Am. Chem. Soc. 2019, 141, 5359–5368.
- 37Deposition numbers 2117706, 2117707, 2117708, 2117709, 2117710, 2117711, 2117712, and 2117713 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 38F. A. Carey, Org. Chem., 5th Ed. , McGraw Hill Higher Education, New York, 2003.
- 39L. Pu, Chem. Rev. 2004, 104, 1687–1716.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.