Orienting an Organic Semiconductor into DNA 3D Arrays by Covalent Bonds
Dr. Xiao Wang
Department of Chemistry, New York University, New York, NY 10003 USA
Search for more papers by this authorDr. Rahul Deshmukh
Department of Physics, City College of New York, New York, NY 10031 USA
Search for more papers by this authorDr. Ruojie Sha
Department of Chemistry, New York University, New York, NY 10003 USA
Search for more papers by this authorDr. Jens J. Birktoft
Department of Chemistry, New York University, New York, NY 10003 USA
Search for more papers by this authorProf. Vinod Menon
Department of Physics, City College of New York, New York, NY 10031 USA
Search for more papers by this authorProf. Nadrian C. Seeman
Department of Chemistry, New York University, New York, NY 10003 USA
deceased
Search for more papers by this authorCorresponding Author
Prof. James W. Canary
Department of Chemistry, New York University, New York, NY 10003 USA
Search for more papers by this authorDr. Xiao Wang
Department of Chemistry, New York University, New York, NY 10003 USA
Search for more papers by this authorDr. Rahul Deshmukh
Department of Physics, City College of New York, New York, NY 10031 USA
Search for more papers by this authorDr. Ruojie Sha
Department of Chemistry, New York University, New York, NY 10003 USA
Search for more papers by this authorDr. Jens J. Birktoft
Department of Chemistry, New York University, New York, NY 10003 USA
Search for more papers by this authorProf. Vinod Menon
Department of Physics, City College of New York, New York, NY 10031 USA
Search for more papers by this authorProf. Nadrian C. Seeman
Department of Chemistry, New York University, New York, NY 10003 USA
deceased
Search for more papers by this authorCorresponding Author
Prof. James W. Canary
Department of Chemistry, New York University, New York, NY 10003 USA
Search for more papers by this authorAbstract
A quasi-one-dimensional organic semiconductor, hepta(p-phenylene vinylene) (HPV), was incorporated into a DNA tensegrity triangle motif using a covalent strategy. 3D arrays were self-assembled from an HPV-DNA pseudo-rhombohedron edge by rational design and characterized by X-ray diffraction. Templated by the DNA motif, HPV molecules exist as single-molecule fluorescence emitters at the concentration of 8 mM within the crystal lattice. The anisotropic fluorescence emission from HPV-DNA crystals indicates HPV molecules are well aligned in the macroscopic 3D DNA lattices. Sophisticated nanodevices and functional materials constructed from DNA can be developed from this strategy by addressing functional components with molecular accuracy.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202115155-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
ange202115155-sup-0001-Supporting_Information_Movie.avi2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. C. Seeman, J. Theor. Biol. 1982, 99, 237–247.
- 2B. H. Robinson, N. C. Seeman, Protein Eng. 1987, 1, 295–300.
- 3T. J. Fu, N. C. Seeman, Biochemistry 1993, 32, 3211–3220.
- 4F. Mathieu, S. Liao, J. Kopatsch, T. Wang, C. Mao, N. C. Seeman, Nano Lett. 2005, 5, 661–665.
- 5P. W. K. Rothemund, Nature 2006, 440, 297–302.
- 6E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, Nature 1998, 394, 539–544.
- 7W. Liu, H. Zhong, R. Wang, N. C. Seeman, 2011, 50, 264–267.
- 8A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, Nature 2012, 483, 311–314.
- 9C. Zhou, X. Duan, N. Liu, Nat. Commun. 2015, 6, 8102.
- 10H. T. Maune, S.-p. Han, R. D. Barish, M. Bockrath, W. A. G. Iii, P. W. K. Rothemund, E. Winfree, Nat. Nanotechnol. 2010, 5, 61–66.
- 11H. Pei, R. Sha, X. Wang, M. Zheng, C. Fan, J. W. Canary, N. C. Seeman, J. Am. Chem. Soc. 2019, 141, 11923–11928.
- 12W. Sun, J. Shen, Z. Zhao, N. Arellano, C. Rettner, J. Tang, T. Cao, Z. Zhou, T. Ta, J. K. Streit, J. A. Fagan, T. Schaus, M. Zheng, S.-J. Han, W. M. Shih, H. T. Maune, P. Yin, Science 2020, 368, 874–877.
- 13Z. G. Wang, Q. Liu, B. Q. Ding, Chem. Mater. 2014, 26, 3364–3367.
- 14J. B. Knudsen, L. Liu, A. L. B. Kodal, M. Madsen, Q. Li, J. Song, J. B. Woehrstein, S. F. J. Wickham, M. T. Strauss, F. Schueder, J. Vinther, A. Krissanaprasit, D. Gudnason, A. A. A. Smith, R. Ogaki, A. N. Zelikin, F. Besenbacher, V. Birkedal, P. Yin, W. M. Shih, R. Jungmann, M. D. Dong, K. V. Gothelf, Nat. Nanotechnol. 2015, 10, 892–898.
- 15J. Zessin, F. Fischer, A. Heerwig, A. Kick, S. Boye, M. Stamm, A. Kiriy, M. Mertig, Nano Lett. 2017, 17, 5163–5170.
- 16J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, N. C. Seeman, Nature 2009, 461, 74–77.
- 17R. Sha, J. J. Birktoft, N. Nguyen, A. R. Chandrasekaran, J. Zheng, X. Zhao, C. Mao, N. C. Seeman, Nano Lett. 2013, 13, 793–797.
- 18M. Kube, F. Kohler, E. Feigl, B. Nagel-Yüksel, E. M. Willner, J. J. Funke, T. Gerling, P. Stömmer, M. N. Honemann, T. G. Martin, S. H. W. Scheres, H. Dietz, Nat. Commun. 2020, 11, 6229.
- 19X. Wang, R. J. Sha, M. Kristiansen, C. Hernandez, Y. D. Hao, C. D. Mao, J. W. Canary, N. C. Seeman, Angew. Chem. Int. Ed. 2017, 56, 6445–6448; Angew. Chem. 2017, 129, 6545–6548.
- 20I. Murase, T. Ohnishi, T. Noguchi, M. Hirooka, Synth. Met. 1987, 17, 639–644.
- 21M. Lu, H. T. Nicolai, G.-J. A. H. Wetzelaer, P. W. M. Blom, Appl. Phys. Lett. 2011, 99, 173302.
- 22J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539–541.
- 23J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys. Lett. 1996, 68, 3120–3122.
- 24A. J. Heeger, 2001, 40, 2591–2611.
- 25H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, S. Han, W. Xu, C. Luo, Y. Meng, Z. Jiang, Y. Chen, D. Li, F. Huang, J. Wang, J. Peng, Y. Cao, Nat. Commun. 2013, 4, 1971.
- 26T. Kietzke, H.-H. Hörhold, D. Neher, Chem. Mater. 2005, 17, 6532–6537.
- 27H. Meier, U. Stalmach, H. Kolshorn, Acta Polym. 1997, 48, 379–384.
- 28J. Rissler, Chem. Phys. Lett. 2004, 395, 92–96.
- 29X. Wang, C. Li, D. Niu, R. Sha, N. C. Seeman, J. W. Canary, Nano Lett. 2018, 18, 2112–2115.
- 30M. Madsen, M. R. Bakke, D. A. Gudnason, A. F. Sandahl, R. A. Hansen, J. B. Knudsen, A. L. B. Kodal, V. Birkedal, K. V. Gothelf, ACS Nano 2021, 15, 9404–9411.
- 31T. W. Hagler, K. Pakbaz, K. F. Voss, A. J. Heeger, Phys. Rev. B 1991, 44, 8652–8666.
- 32A. Leventis, J. Royakkers, A. G. Rapidis, N. Goodeal, M. K. Corpinot, J. M. Frost, D.-K. Bučar, M. O. Blunt, F. Cacialli, H. Bronstein, J. Am. Chem. Soc. 2018, 140, 1622–1626.
- 33I. Osaka, K. Takimiya, Polymer 2015, 59, A1–A15.
- 34J. Mei, Z. Bao, Chem. Mater. 2014, 26, 604–615.
- 35L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, L. Yu, Chem. Rev. 2015, 115, 12666–12731.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.