A Hydrogen-Bonded Ravel Assembled by Anion Coordination
Xiaotong Zhao
College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Search for more papers by this authorDr. Heng Wang
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055 China
Search for more papers by this authorBoyang Li
College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Search for more papers by this authorWenyao Zhang
College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Search for more papers by this authorProf. Xiaopeng Li
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055 China
Search for more papers by this authorWei Zhao
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorProf. Christoph Janiak
Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
Search for more papers by this authorDr. Andrew W. Heard
Department of Chemistry, University of Cambridge, Cambridge, UK
Search for more papers by this authorProf. Xiao-Juan Yang
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorCorresponding Author
Prof. Biao Wu
College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorXiaotong Zhao
College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Search for more papers by this authorDr. Heng Wang
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055 China
Search for more papers by this authorBoyang Li
College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Search for more papers by this authorWenyao Zhang
College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Search for more papers by this authorProf. Xiaopeng Li
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055 China
Search for more papers by this authorWei Zhao
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorProf. Christoph Janiak
Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
Search for more papers by this authorDr. Andrew W. Heard
Department of Chemistry, University of Cambridge, Cambridge, UK
Search for more papers by this authorProf. Xiao-Juan Yang
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorCorresponding Author
Prof. Biao Wu
College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
Search for more papers by this authorAbstract
Anion-coordination-driven assembly (ACDA) is showing increasing power in the construction of anionic supramolecular architectures. Herein, by expanding the anion centers from oxoanion (phosphate or sulfate) to organic tris-carboxylates, an Archimedean solid (truncated tetrahedron) and a highly entangled, double-walled tetrahedron featuring a ravel topology have been assembled with tris-bis(urea) ligands. The results demonstrate the promising ability of tris-carboxylates as new anion coordination centers in constructing novel topologies with increasing complexity and diversity compared to phosphate or sulfate ions on account of the modifiable size and easy functionalization character of these organic anions.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202115042-sup-0001-cif.zip181.3 KB | Supporting Information |
ange202115042-sup-0001-misc_information.pdf4.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. D. P. Fielden, D. A. Leigh, S. L. Woltering, Angew. Chem. Int. Ed. 2017, 56, 11166–11194; Angew. Chem. 2017, 129, 11318–11347;
- 1bK. E. Horner, M. A. Miller, J. W. Steed, P. M. Sutcliffe, Chem. Soc. Rev. 2016, 45, 6432–6448;
- 1cR. Brasher, R. G. Scharein, M. Vazquez, Biochem. Soc. Trans. 2013, 41, 606–611;
- 1dR. S. Forgan, J.-P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434–5464.
- 2
- 2aJ. E. Mueller, S. M. Du, N. C. Seeman, J. Am. Chem. Soc. 1991, 113, 6306–6308;
- 2bE. J. Rawdon, K. C. Millett, J. I. Sułkowska, A. Stasiak, Biochem. Soc. Trans. 2013, 41, 538–541;
- 2cP. Kindgren, Å. Strand, New Phytol. 2015, 206, 889–891.
- 3
- 3aJ.-F. Ayme, J. E. Beves, C. J. Campbella, D. A. Leigh, Chem. Soc. Rev. 2013, 42, 1700–1712;
- 3bQ.-H. Guo, Y. Jiao, Y. Feng, J. F. Stoddart, CCS Chem. 2021, 3, 1542–1572.
- 4C. O. Dietrich-Buchecker, J.-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1989, 28, 189–192; Angew. Chem. 1989, 101, 192–194.
- 5J.-F. o. Ayme, J. E. Beves, D. A. Leigh, R. T. McBurney, K. Rissanen, Nat. Chem. 2012, 4, 15–20.
- 6
- 6aN. Ponnuswamy, F. B. L. Cougnon, G. D. Pantos, J. K. M. Sanders, J. Am. Chem. Soc. 2014, 136, 8243–8251;
- 6bL.-L. Dang, H.-J. Feng, Y.-J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2020, 142, 18946–18954.
- 7Y. Inomata, T. Sawada, M. Fujita, Chem 2020, 6, 294–303.
- 8Y. Inomata, T. Sawada, M. Fujita, J. Am. Chem. Soc. 2021, 143, 16734–16739.
- 9J. J. Danon, A. Krüger, D. A. Leigh, J.-F. Lemonnier, A. J. Stephens, I. J. Vitorica-Yrezabal, S. L. Woltering, Science 2017, 355, 159–162.
- 10D. A. Leigh, J. J. Danon, S. D. P. Fielden, J.-F. Lemonnier, G. F. S. Whitehead, S. L. Woltering, Nat. Chem. 2021, 13, 117–122.
- 11T. Castle, M. E. Evans, S. T. Hyde, New J. Chem. 2008, 32, 1484–1492.
- 12F. Li, J. K. Clegg, L. F. Lindoy, R. B. Macquart, G. V. Meehan, Nat. Commun. 2011, 2, 205–209.
- 13
- 13aY. Domoto, M. Abe, K. Yamamoto, T. Kikuchi, M. Fujita, Chem. Sci. 2020, 11, 10457–10460;
- 13bY. Domoto, M. Abe, M. Fujita, J. Am. Chem. Soc. 2021, 143, 8578–8582;
- 13cY. Domoto, M. Abe, T. Kikuchi, M. Fujita, Angew. Chem. Int. Ed. 2020, 59, 3450–3454; Angew. Chem. 2020, 132, 3478–3482;
- 13dA. W. Heard, N. M. A. Speakman, J. R. Nitschke, Nat. Chem. 2021, 13, 824–826.
- 14
- 14aS. Li, C. Jia, B. Wu, Q. Luo, X. Huang, Z. Yang, Q.-S. Li, X.-J. Yang, Angew. Chem. Int. Ed. 2011, 50, 5721–5724; Angew. Chem. 2011, 123, 5839–5842;
- 14bB. Wu, F. Cui, Y. Lei, S. Li, N. S. Amadeu, C. Janiak, Y.-J. Lin, L.-H. Weng, Y.-Y. Wang, X.-J. Yang, Angew. Chem. Int. Ed. 2013, 52, 5096–5100; Angew. Chem. 2013, 125, 5200–5204;
- 14cB. Li, W. Zhang, S. Lu, B. Zheng, D. Zhang, A. Li, X. Li, X.-J. Yang, B. Wu, J. Am. Chem. Soc. 2020, 142, 21160–21168;
- 14dD. Yang, J. Zhao, Y. Zhao, Y. Lei, L. Cao, X.-J. Yang, M. Davi, N. d. S. Amadeu, C. Janiak, Z. Zhang, Y.-Y. Wang, B. Wu, Angew. Chem. Int. Ed. 2015, 54, 8658–8661; Angew. Chem. 2015, 127, 8782–8785;
- 14eW. Zhang, D. Yang, J. Zhao, L. Hou, J. L. Sessler, X.-J. Yang, B. Wu, J. Am. Chem. Soc. 2018, 140, 5248–5256;
- 14fW. Zhang, Y. Feng, B. Li, D. Yang, L. Hou, W. Zhao, X.-J. Yang, B. Wu, Chem. Eur. J. 2021, https://doi.org/10.1002/chem.202103671.
- 15
- 15aM. Morshedi, M. Thomas, A. Tarzia, C. J. Doonan, N. G. White, Chem. Sci. 2017, 8, 3019–3025;
- 15bM. Thomas, T. A. Lagones, M. Judd, M. Morshedi, M. L. O'Mara, N. G. White, Chem. Asian J. 2017, 12, 1587–1597;
- 15cS. A. Boer, M. Morshedi, A. Tarzia, C. J. Doonan, N. G. White, Chem. Eur. J. 2019, 25, 10006–10012;
- 15dC. M. Thomas, E. m. M. Foyle, S. E. Walker, N. G. White, Aust. J. Chem. 2021, https://doi.org/10.1071/CH21101.
- 16X. Zhao, H. Wang, B. Li, B. Zheng, D. Yang, W. Xu, X. Li, X.-J. Yang, B. Wu, Chem. Commun. 2021, 57, 6078–6081.
- 17Deposition Numbers 2103304 (for the truncated tetrahedral complex 1) and 2102972 (for the ravel complex 15) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 18
- 18aS. J. Brooks, P. A. Gale, M. E. Light, Chem. Commun. 2005, 7, 4696–4698;
- 18bJ. Wang, S. Li, P. Yang, X. Huang, X.-J. Yang, B. Wu, CrystEngComm 2013, 15, 4540–4548.
- 19
- 19aM. D. Ward, C. A. Hunter, N. H. Williams, Acc. Chem. Res. 2018, 51, 2073–2082;
- 19bS. P. Argent, H. Adams, T. Riis-Johannessen, J. C. Jeffery, L. P. Harding, M. D. Ward, J. Am. Chem. Soc. 2006, 128, 72–73;
- 19cZ. R. Bell, J. C. Jeffery, J. A. McCleverty, M. D. Ward, Angew. Chem. Int. Ed. 2002, 41, 2515–2518;
10.1002/1521-3773(20020715)41:14<2515::AID-ANIE2515>3.0.CO;2-Q CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 2625–2628.
- 20
- 20aI. M. Müller, R. Robson, F. Separovic, Angew. Chem. Int. Ed. 2001, 40, 4385–4386;
10.1002/1521-3773(20011203)40:23<4385::AID-ANIE4385>3.0.CO;2-T CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4519–4520;
- 20bY. Gong, Y. Zhang, C. Qin, C. Sun, X. Wang, Z. Su, Angew. Chem. Int. Ed. 2019, 58, 780–784; Angew. Chem. 2019, 131, 790–794.
- 21A. C. Sudik, A. R. Millward, N. W. Ockwig, A. P. Côté, J. Kim, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 7110–7118.
- 22S. Aoki, M. Shiro, E. Kimura, Chem. Eur. J. 2002, 8, 929–939.
10.1002/1521-3765(20020215)8:4<929::AID-CHEM929>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 23C. J. Pugh, V. Santolini, R. L. Greenaway, M. A. Little, M. E. Briggs, K. E. Jelfs, A. I. Cooper, Cryst. Growth Des. 2018, 18, 2759–2764.
- 24I. M. Oppel (née Müller), K. Föcker, Angew. Chem. Int. Ed. 2008, 47, 402–405; Angew. Chem. 2008, 120, 408–411.
- 25N. Zhang, L.-X. Sun, Y.-H. Xing, F.-Y. Bai, Cryst. Growth Des. 2019, 19, 5686–5695.
- 26Y. Tamura, H. Takezawa, M. Fujita, J. Am. Chem. Soc. 2020, 142, 5504–5508.
- 27
- 27aM. Tang, Y. Liang, X. Lu, X. Miao, L. Jiang, J. Liu, L. Bian, S. Wang, L. Wu, Z. Liu, Chem 2021, 7, 2160–2174;
- 27bJ. Serrano-Plana, Nat. Chem. 2021, 13, 729.
- 28
- 28aJ.-F. Nierengarten, C. O. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc. 1994, 116, 375–376;
- 28bF. Ibukuro, M. Fujita, K. Yamaguchi, J.-P. Sauvage, J. Am. Chem. Soc. 1999, 121, 11014–11015.
- 29T. K. Ronson, J. Fisher, L. P. Harding, P. J. Rizkallah, J. E. Warren, M. J. Hardie, Nat. Chem. 2009, 1, 212–216.
- 30C. Schouwey, J. J. Holstein, R. Scopelliti, K. O. Zhurov, K. O. Nagornov, Y. O. Tsybin, O. S. Smart, G. Bricogne, K. Severin, Angew. Chem. Int. Ed. 2014, 53, 11261–11265; Angew. Chem. 2014, 126, 11443–11447.
- 31
- 31aR. F. Carina, C. O. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc. 1996, 118, 9110–9116;
- 31bL.-E. Perret-Aebi, A. v. Zelewsky, C. Dietrich-Buchecker, J.-P. Sauvage, Angew. Chem. Int. Ed. 2004, 43, 4482–4485; Angew. Chem. 2004, 116, 4582–4585;
- 31cO. Lukin, F. Vögtle, Angew. Chem. Int. Ed. 2005, 44, 1456–1477; Angew. Chem. 2005, 117, 1480–1501.
- 32
- 32aF. J. Rizzuto, W.-Y. Wu, T. K. Ronson, J. R. Nitschke, Angew. Chem. Int. Ed. 2016, 55, 7958–7962; Angew. Chem. 2016, 128, 8090–8094;
- 32bH. T. Chifotides, I. D. Giles, K. R. Dunbar, J. Am. Chem. Soc. 2013, 135, 3039–3055.
- 33X. Bai, C. Jia, Y. Zhao, D. Yang, S.-C. Wang, A. Li, Y. Chan, Y.-Y. Wang, X.-J. Yang, B. Wu, Angew. Chem. Int. Ed. 2018, 57, 1851–1855; Angew. Chem. 2018, 130, 1869–1873.
- 34B. Li, B. Zheng, W. Zhang, D. Zhang, X.-J. Yang, B. Wu, J. Am. Chem. Soc. 2020, 142, 6304–6311.
- 35A. Kanazawa, T. Ikeda, T. Endo, J. Appl. Polym. Sci. 1994, 53, 1237–1244.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.