Surface Gelation on Disulfide Electrocatalysts in Lithium–Sulfur Batteries
Xi-Yao Li
Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorDr. Shuai Feng
College of Chemistry and Chemical Engineering, Taishan University, Shandong, 271021 P.R. China
Search for more papers by this authorMeng Zhao
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorChang-Xin Zhao
Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorDr. Xiang Chen
Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Bo-Quan Li
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorProf. Jia-Qi Huang
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Qiang Zhang
Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorXi-Yao Li
Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorDr. Shuai Feng
College of Chemistry and Chemical Engineering, Taishan University, Shandong, 271021 P.R. China
Search for more papers by this authorMeng Zhao
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorChang-Xin Zhao
Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorDr. Xiang Chen
Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Bo-Quan Li
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorProf. Jia-Qi Huang
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Qiang Zhang
Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorAbstract
Lithium–sulfur (Li–S) batteries are deemed as future energy storage devices due to ultrahigh theoretical energy density. Cathodic polysulfide electrocatalysts have been widely investigated to promote sluggish sulfur redox kinetics. Probing the surface structure of electrocatalysts is vital to understanding the mechanism of polysulfide electrocatalysis. In this work, we for the first time identify surface gelation on disulfide electrocatalysts. Concretely, the Lewis acid sites on disulfides trigger the ring-opening polymerization of the dioxolane solvent to generate a surface gel layer, covering disulfides and reducing the electrocatalytic activity. Accordingly, a Lewis base triethylamine (TEA) is introduced as a competitive inhibitor. Consequently, Li–S batteries with disulfide electrocatalysts and TEA afford high specific capacity and improved rate responses. This work affords new insights on the actual surface structure of electrocatalysts in Li–S batteries.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202114671-sup-0001-misc_information.pdf2.8 MB | Supporting Information |
ange202114671-sup-0001-SI.mp44.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J. Z. Lee, M.-H. Lee, J. Alvarado, M. A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, Y. S. Meng, Nature 2019, 572, 511–515;
- 1bC.-B. Jin, X.-Q. Zhang, O.-W. Sheng, S.-Y. Sun, L.-P. Hou, P. Shi, B.-Q. Li, J.-Q. Huang, X.-Y. Tao, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 22990–22995; Angew. Chem. 2021, 133, 23172–23177;
- 1cP. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nat. Mater. 2012, 11, 19–29;
- 1dH. Yang, Y. Qiao, Z. Chang, P. He, H. Zhou, Angew. Chem. Int. Ed. 2021, 60, 17726–17734; Angew. Chem. 2021, 133, 17867–17875.
- 2
- 2aC. Zhao, G.-L. Xu, Z. Yu, L. Zhang, I. Hwang, Y.-X. Mo, Y. Ren, L. Cheng, C.-J. Sun, Y. Ren, X. Zuo, J.-T. Li, S.-G. Sun, K. Amine, T. Zhao, Nat. Nanotechnol. 2021, 16, 166–173;
- 2bC.-X. Zhao, W.-J. Chen, M. Zhao, Y.-W. Song, J.-N. Liu, B.-Q. Li, T. Yuan, C.-M. Chen, Q. Zhang, J.-Q. Huang, EcoMat 2021, 3, e12066;
- 2cY. Zhang, J. Liu, J. Wang, Y. Zhao, D. Luo, A. Yu, X. Wang, Z. Chen, Angew. Chem. Int. Ed. 2021, 60, 26622–26629; Angew. Chem. 2021, 133, 26826–26833.
- 3
- 3aM. Zhao, B.-Q. Li, H.-J. Peng, H. Yuan, J.-Y. Wei, J.-Q. Huang, Angew. Chem. Int. Ed. 2020, 59, 12636–12652; Angew. Chem. 2020, 132, 12736–12753;
- 3bH.-J. Peng, J.-Q. Huang, X.-Y. Liu, X.-B. Cheng, W.-T. Xu, C.-Z. Zhao, F. Wei, Q. Zhang, J. Am. Chem. Soc. 2017, 139, 8458–8466;
- 3cC.-C. Su, M. He, R. Amine, Z. Chen, K. Amine, Angew. Chem. Int. Ed. 2018, 57, 12033–12036; Angew. Chem. 2018, 130, 12209–12212.
- 4
- 4aM. Zhao, X.-Y. Li, X. Chen, B.-Q. Li, S. Kaskel, Q. Zhang, J.-Q. Huang, eScience 2021, https://doi.org/10.1016/j.esci.2021.08.001;
- 4bS. Nanda, A. Bhargav, A. Manthiram, Joule 2020, 4, 1121–1135;
- 4cP. Wang, B. Xi, Z. Zhang, M. Huang, J. Feng, S. Xiong, Angew. Chem. Int. Ed. 2021, 60, 15563–15571; Angew. Chem. 2021, 133, 15691–15699;
- 4dJ. Xiang, W. Shen, Z. Guo, J. Meng, L. Yuan, Y. Zhang, Z. Cheng, Y. Shen, X. Lu, Y. Huang, Angew. Chem. Int. Ed. 2021, 60, 14313–14318; Angew. Chem. 2021, 133, 14434–14439.
- 5
- 5aA. Gupta, A. Bhargav, A. Manthiram, ACS Energy Lett. 2021, 6, 224–231;
- 5bY. Huang, M. Shaibani, T. D. Gamot, M. Wang, P. Jovanović, M. C. Dilusha Cooray, M. S. Mirshekarloo, R. J. Mulder, N. V. Medhekar, M. R. Hill, M. Majumder, Nat. Commun. 2021, 12, 5375;
- 5cM. Zhao, X. Chen, X.-Y. Li, B.-Q. Li, J.-Q. Huang, Adv. Mater. 2021, 33, 2007298;
- 5dX. Wang, Y. Yang, C. Lai, R. Li, H. Xu, D. H. S. Tan, K. Zhang, W. Yu, O. Fjeldberg, M. Lin, W. Tang, Y. S. Meng, K. P. Loh, Angew. Chem. Int. Ed. 2021, 60, 11359–11369; Angew. Chem. 2021, 133, 11460–11470.
- 6
- 6aY. Yang, Y. Zhong, Q. Shi, Z. Wang, K. Sun, H. Wang, Angew. Chem. Int. Ed. 2018, 57, 15549–15552; Angew. Chem. 2018, 130, 15775–15778;
- 6bW. Xue, D. Yu, L. Suo, C. Wang, Z. Wang, G. Xu, X. Xiao, M. Ge, M. Ko, Y. Chen, L. Qie, Z. Zhu, A. S. Helal, W.-K. Lee, J. Li, Matter 2019, 1, 1047–1060;
- 6cY. Fu, Z. Wu, Y. Yuan, P. Chen, L. Yu, L. Yuan, Q. Han, Y. Lan, W. Bai, E. Kan, C. Huang, X. Ouyang, X. Wang, J. Zhu, J. Lu, Nat. Commun. 2020, 11, 845;
- 6dS. Nanda, A. Bhargav, Z. Jiang, X. Zhao, Y. Liu, A. Manthiram, Energy Environ. Sci. 2021, 14, 5423–5432.
- 7
- 7aB.-Q. Li, L. Kong, C.-X. Zhao, Q. Jin, X. Chen, H.-J. Peng, J.-L. Qin, J.-X. Chen, H. Yuan, Q. Zhang, J.-Q. Huang, InfoMat 2019, 1, 533–541;
- 7bY.-W. Song, J.-L. Qin, C.-X. Zhao, M. Zhao, L.-P. Hou, Y.-Q. Peng, H.-J. Peng, B.-Q. Li, J. Energy Chem. 2022, 64, 568–573;
- 7cB.-Q. Li, H.-J. Peng, X. Chen, S.-Y. Zhang, J. Xie, C.-X. Zhao, Q. Zhang, CCS Chem. 2019, 1, 128–137;
- 7dX. Meng, Y. Liu, Z. Wang, Y. Zhang, X. Wang, J. Qiu, Energy Environ. Sci. 2021, 14, 2278–2290;
- 7eM. Zhao, H.-J. Peng, Z.-W. Zhang, B.-Q. Li, X. Chen, J. Xie, X. Chen, J.-Y. Wei, Q. Zhang, J.-Q. Huang, Angew. Chem. Int. Ed. 2019, 58, 3779–3783; Angew. Chem. 2019, 131, 3819–3823;
- 7fS. Kim, W.-G. Lim, H. Im, M. Ban, J. W. Han, J. Lee, J. Hwang, J. Lee, J. Am. Chem. Soc. 2021, 143, 15644–15652.
- 8
- 8aX. Tao, J. Wang, C. Liu, H. Wang, H. Yao, G. Zheng, Z. W. Seh, Q. Cai, W. Li, G. Zhou, C. Zu, Y. Cui, Nat. Commun. 2016, 7, 11203;
- 8bX. Liu, J.-Q. Huang, Q. Zhang, L. Mai, Adv. Mater. 2017, 29, 1601759;
- 8cH. Zhang, L. K. Ono, G. Tong, Y. Liu, Y. Qi, Nat. Commun. 2021, 12, 4738;
- 8dY.-T. Liu, S. Liu, G.-R. Li, X.-P. Gao, Adv. Mater. 2021, 33, 2003955.
- 9
- 9aH. Wang, Q. Zhang, H. Yao, Z. Liang, H.-W. Lee, P.-C. Hsu, G. Zheng, Y. Cui, Nano Lett. 2014, 14, 7138–7144;
- 9bG. Babu, N. Masurkar, H. Al Salem, L. M. R. Arava, J. Am. Chem. Soc. 2017, 139, 171–178;
- 9cW.-G. Lim, S. Kim, C. Jo, J. Lee, Angew. Chem. Int. Ed. 2019, 58, 18746–18757; Angew. Chem. 2019, 131, 18920–18931.
- 10Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, Q. Zhang, Nano Lett. 2016, 16, 519–527.
- 11Z. Cheng, Y. Chen, Y. Yang, L. Zhang, H. Pan, X. Fan, S. Xiang, Z. Zhang, Adv. Energy Mater. 2021, 11, 2170048.
- 12
- 12aB. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou, W. Lv, Y.-B. He, Y. Wan, F. Kang, Q.-H. Yang, Adv. Energy Mater. 2020, 10, 2000091;
- 12bH.-J. Peng, Z.-W. Zhang, J.-Q. Huang, G. Zhang, J. Xie, W.-T. Xu, J.-L. Shi, X. Chen, X.-B. Cheng, Q. Zhang, Adv. Mater. 2016, 28, 9551–9558.
- 13
- 13aT. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao, S. Fan, B. Liu, B. Li, F. Kang, Q.-H. Yang, Energy Environ. Sci. 2017, 10, 1694–1703;
- 13bL. Peng, Z. Wei, C. Wan, J. Li, Z. Chen, D. Zhu, D. Baumann, H. Liu, C. S. Allen, X. Xu, A. I. Kirkland, I. Shakir, Z. Almutairi, S. Tolbert, B. Dunn, Y. Huang, P. Sautet, X. Duan, Nat. Catal. 2020, 3, 762–770.
- 14
- 14aY. Zhong, L. Yin, P. He, W. Liu, Z. Wu, H. Wang, J. Am. Chem. Soc. 2018, 140, 1455–1459;
- 14bM. Wang, Z. Sun, H. Ci, Z. Shi, L. Shen, C. Wei, Y. Ding, X. Yang, J. Sun, Angew. Chem. Int. Ed. 2021, 60, 24558–24565; Angew. Chem. 2021, 133, 24763–24770.
- 15W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang, H. Wang, K. P. So, A. Maurano, D. Yu, Y. Chen, L. Qie, Z. Zhu, G. Xu, J. Kong, J. Li, Nat. Energy 2019, 4, 374–382.
- 16M. Zhao, H.-J. Peng, B.-Q. Li, X. Chen, J. Xie, X. Liu, Q. Zhang, J.-Q. Huang, Angew. Chem. Int. Ed. 2020, 59, 9011–9017; Angew. Chem. 2020, 132, 9096–9102.
- 17
- 17aZ. Li, H. Jiang, N.-C. Lai, T. Zhao, Y.-C. Lu, Chem. Mater. 2019, 31, 10186–10196;
- 17bC.-X. Zhao, B.-Q. Li, M. Zhao, J.-N. Liu, L.-D. Zhao, X. Chen, Q. Zhang, Energy Environ. Sci. 2020, 13, 1711–1716.
- 18
- 18aH. Liu, D. Grasseschi, A. Dodda, K. Fujisawa, D. Olson, E. Kahn, F. Zhang, T. Zhang, Y. Lei, N. Branco Ricardo Braga, L. Elías Ana, C. Silva Rodolfo, Y.-T. Yeh, M. Maroneze Camila, L. Seixas, P. Hopkins, S. Das, J. S. de Matos Christiano, M. Terrones, Sci. Adv. 2020, 6, eabc9308;
- 18bY. Yu, G.-H. Nam, Q. He, X.-J. Wu, K. Zhang, Z. Yang, J. Chen, Q. Ma, M. Zhao, Z. Liu, F.-R. Ran, X. Wang, H. Li, X. Huang, B. Li, Q. Xiong, Q. Zhang, Z. Liu, L. Gu, Y. Du, W. Huang, H. Zhang, Nat. Chem. 2018, 10, 638–643.
- 19
- 19aX. Ji, Y. Lin, J. Zeng, Z. Ren, Z. Lin, Y. Mu, Y. Qiu, J. Yu, Nat. Commun. 2021, 12, 1380;
- 19bY.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186–13200; Angew. Chem. 2013, 125, 13426–13441;
- 19cZ. W. Seh, J. Kibsgaard, C. F. Dickens, I. B. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 20
- 20aS.-Y. Lang, R.-J. Xiao, L. Gu, Y.-G. Guo, R. Wen, L.-J. Wan, J. Am. Chem. Soc. 2018, 140, 8147–8155;
- 20bT. Liu, H. Li, J. Yue, J. Feng, M. Mao, X. Zhu, Y.-s. Hu, H. Li, X. Huang, L. Chen, L. Suo, Angew. Chem. Int. Ed. 2021, 60, 17547–17555; Angew. Chem. 2021, 133, 17688–17696.
- 21A. La Monaca, F. De Giorgio, F. Soavi, G. Tarquini, M. Di Carli, P. Paolo Prosini, C. Arbizzani, ChemElectroChem 2018, 5, 1272–1278.
- 22Q. Zhao, X. Liu, S. Stalin, K. Khan, L. A. Archer, Nat. Energy 2019, 4, 365–373.
- 23F. Q. Liu, W. P. Wang, Y. X. Yin, S. F. Zhang, J. L. Shi, L. Wang, X. D. Zhang, Y. Zheng, J. J. Zhou, L. Li, Y. G. Guo, Sci. Adv. 2018, 4, eaat5383.
- 24Y.-W. Song, Y.-Q. Peng, M. Zhao, Y. Lu, J.-N. Liu, B.-Q. Li, Q. Zhang, Small Sci. 2021, 2100042.
- 25N. V. Timosheva, A. Chandrasekaran, R. O. Day, R. R. Holmes, Inorg. Chem. 1998, 37, 3862–3867.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.