Möbius ZnII-Hexaphyrins Bearing a Chiral Coordinating Arm: A Chiroptical Switch Featuring P/M Twist Inversion Controlled by Achiral Effectors
Dr. Hervé Ruffin
Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
Search for more papers by this authorDr. Arnaud Fihey
Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
Search for more papers by this authorCorresponding Author
Dr. Bernard Boitrel
Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
Search for more papers by this authorCorresponding Author
Dr. Stéphane Le Gac
Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
Search for more papers by this authorDr. Hervé Ruffin
Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
Search for more papers by this authorDr. Arnaud Fihey
Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
Search for more papers by this authorCorresponding Author
Dr. Bernard Boitrel
Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
Search for more papers by this authorCorresponding Author
Dr. Stéphane Le Gac
Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
Search for more papers by this authorAbstract
By their conformational flexibility, Möbius aromatic hexaphyrins provide a dynamic chirality attractive to develop stimuli responsive systems such as chiroptical switches. A regular [28]hexaphyrin has been equipped with a chiral coordinating arm to achieve transfer of chirality from a fix stereogenic element to the dynamic Möbius one. The arm allows straightforward formation of labile monometallic ZnII complexes with an exogenous ligand, either a carboxylato or an amino with opposite inwards/outwards orientations relative to the Möbius ring. As a corollary, the chiral coordinating arm is constrained over the ring or laterally, inducing opposite P and M Möbius configurations with unprecedented high stereoselectivity (diast. excess greater than 95 %). By tuning the transfer of chirality, these achiral effectors generate electronic circular dichroism spectra with bisignate Cotton effect of opposite signs. Switching between distinct chiroptical states was ultimately achieved in mild conditions owing to ligand exchange, with high robustness (10 cycles).
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202113844-sup-0001-misc_information.pdf13 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. M. Walba, M. Richards, R. C. Haltiwanger, J. Am. Chem. Soc. 1982, 104, 3219–3221.
- 2
- 2aD. Ajami, O. Oeckler, A. Simon, R. Herges, Nature 2003, 426, 819–821;
- 2bC. Castro, Z. Chen, C. S. Wannere, H. Jiao, W. L. Karney, M. Mauksch, R. Puchta, N. J. R. van Eikema Hommes, P. v. R. Schleyer, J. Am. Chem. Soc. 2005, 127, 2425–2432.
- 3
- 3aH. S. Rzepa, Chem. Rev. 2005, 105, 3697–3715;
- 3bR. Herges, Chem. Rev. 2006, 106, 4820–4842.
- 4Non-porphyrinoids Möbius rings (see also ref. 1,2a):
- 4aG. R. Schaller, F. Topić, K. Rissanen, Y. Okamoto, J. Shen, R. Herges, Nat. Chem. 2014, 6, 608–613;
- 4bG. Naulet, L. Sturm, A. Robert, P. Dechambenoit, F. Röhricht, R. Herges, H. Bock, F. Durola, Chem. Sci. 2018, 9, 8930–8936;
- 4cY.-Y. Fan, D. Chen, Z.-A. Huang, J. Zhu, C.-H. Tung, L.-Z. Wu, H. Cong, Nat. Commun. 2018, 9, 3037;
- 4dS. Nishigaki, Y. Shibata, A. Nakajima, H. Okajima, Y. Masumoto, T. Osawa, A. Muranaka, H. Sugiyama, A. Horikawa, H. Uekusa, H. Koshino, M. Uchiyama, A. Sakamoto, K. Tanaka, J. Am. Chem. Soc. 2019, 141, 14955–14960;
- 4eX. Jiang, S. D. Laffoon, D. Chen, S. Pérez-Estrada, A. S. Danis, J. Rodríguez-López, M. A. Garcia-Garibay, J. Zhu, J. S. Moore, J. Am. Chem. Soc. 2020, 142, 6493–6498;
- 4fZ. Luo, X. Yang, K. Cai, X. Fu, D. Zhang, Y. Ma, D. Zhao, Angew. Chem. Int. Ed. 2020, 59, 14854–14860; Angew. Chem. 2020, 132, 14964–14970;
- 4gZ.-L. Qiu, D. Chen, Z. Deng, K.-S. Chu, Y.-Z. Tan, J. Zhu, Sci. China Chem. 2021, 64, 1004–1008.
- 5E. Heilbronner, Tetrahedron Lett. 1964, 5, 1923–1928.
- 6
- 6aT. Tanaka, A. Osuka, Chem. Rev. 2017, 117, 2584–2640;
- 6bY. M. Sung, J. Oh, W.-Y. Cha, W. Kim, J. M. Lim, M.-C. Yoon, D. Kim, Chem. Rev. 2017, 117, 2257–2312;
- 6cB. Szyszko, M. J. Białek, E. Pacholska-Dudziak, L. Latos-Grażyński, Chem. Rev. 2017, 117, 2839–2909.
- 7Selected early work with Möbius porphyrinoids (see also ref. 11):
- 7aM. Stępień, L. Latos-Grażyński, N. Sprutta, P. Chwalisz, L. Szterenberg, Angew. Chem. Int. Ed. 2007, 46, 7869–7873; Angew. Chem. 2007, 119, 8015–8019;
- 7bY. Tanaka, S. Saito, S. Mori, N. Aratani, H. Shinokubo, N. Shibata, Y. Higuchi, Z. S. Yoon, K. S. Kim, S. B. Noh, J. K. Park, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2008, 47, 681–684; Angew. Chem. 2008, 120, 693–696;
- 7cS. Saito, J.-Y. Shin, J. M. Lim, K. S. Kim, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2008, 47, 9657–9660; Angew. Chem. 2008, 120, 9803–9806;
- 7dJ. K. Park, Z. S. Yoon, M.-C. Yoon, K. S. Kim, S. Mori, J.-Y. Shin, A. Osuka, D. Kim, J. Am. Chem. Soc. 2008, 130, 1824–1825;
- 7eE. Pacholska-Dudziak, J. Skonieczny, M. Pawlicki, L. Szterenberg, Z. Ciunik, L. Latos-Grażyński, J. Am. Chem. Soc. 2008, 130, 6182–6195;
- 7fJ. Sankar, S. Mori, S. Saito, H. Rath, M. Suzuki, Y. Inokuma, H. Shinokubo, K. S. Kim, Z. S. Yoon, J.-Y. Shin, J. M. Lim, Y. Matsuzaki, O. Matsushita, A. Muranaka, N. Kobayashi, D. Kim, A. Osuka, J. Am. Chem. Soc. 2008, 130, 13568–13579;
- 7gK. S. Kim, Z. S. Yoon, A. Butler Ricks, J.-Y. Shin, S. Mori, J. Sankar, S. Saito, Y. M. Jung, M. R. Wasielewski, A. Osuka, D. Kim, J. Phys. Chem. A 2009, 113, 4498–4506;
- 7hZ. S. Yoon, A. Osuka, D. Kim, Nat. Chem. 2009, 1, 113–122;
- 7iT. Tanaka, T. Sugita, S. Tokuji, S. Saito, A. Osuka, Angew. Chem. Int. Ed. 2010, 49, 6619–6621; Angew. Chem. 2010, 122, 6769–6771;
- 7jT. Higashino, J. M. Lim, T. Miura, S. Saito, J.-Y. Shin, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2010, 49, 4950–4954; Angew. Chem. 2010, 122, 5070–5074;
- 7kJ. M. Lim, J.-Y. Shin, Y. Tanaka, S. Saito, A. Osuka, D. Kim, J. Am. Chem. Soc. 2010, 132, 3105–3114;
- 7lM. Stępień, B. Szyszko, L. Latos-Grażyński, J. Am. Chem. Soc. 2010, 132, 3140–3152;
- 7mT. Higashino, B. S. Lee, J. M. Lim, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2012, 51, 13105–13108; Angew. Chem. 2012, 124, 13282–13285.
- 8H. Yamamoto, E. M. Carreira, Comprehensive Chirality, Elsevier Science, Oxford, 2012.
- 9J. R. Brandt, F. Salerno, M. J. Fuchter, Nat. Rev. Chem. 2017, 1, 0045.
- 10
- 10aB. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geertsema, Chem. Rev. 2000, 100, 1789–1816;
- 10bL. Zhang, H.-X. Wang, S. Li, M. Liu, Chem. Soc. Rev. 2020, 49, 9095–9120.
- 11
- 11aH. Ruffin, G. Nyame Mendendy Boussambe, T. Roisnel, V. Dorcet, B. Boitrel, S. Le Gac, J. Am. Chem. Soc. 2017, 139, 13847–13857;
- 11bS. Le Gac, E. Caytan, V. Dorcet, B. Boitrel, Org. Biomol. Chem. 2019, 17, 3718–3722;
- 11cR. Benchouaia, N. Cissé, B. Boitrel, M. Sollogoub, S. Le Gac, M. Ménand, J. Am. Chem. Soc. 2019, 141, 11583–11593;
- 11dB. Boitrel, S. Le Gac, Chem. Commun. 2020, 56, 9166–9169;
- 11eB. Boitrel, S. Le Gac, Chem. Commun. 2021, 57, 3559–3562.
- 12M. Suzuki, A. Osuka, Org. Lett. 2003, 5, 3943–3946.
- 13M. Suzuki, A. Osuka, Chem. Commun. 2005, 3685–3687.
- 14M. Ménand, M. Sollogoub, B. Boitrel, S. Le Gac, Angew. Chem. Int. Ed. 2016, 55, 297–301; Angew. Chem. 2016, 128, 305–309.
- 15The attached CO2H is likely involved in intramolecular H-bonds with pyrroles. Indeed, its protonation state as well as the presence of a polar protic solvent have marked effects on the ECD and NMR spectra of RR-4 (Figures S70, S71).
- 16The minor species labeled “3”, accounting for ca. 10 %, features an inward coordinated BuNH2 as revealed by the important shielding of its alkyl chain (Figure 5 d, purple dots).
- 17The driving force remains misunderstood. Possibly, (putative) second spheres of coordination with the amide group of the coordinating arm, as observed in a related system (Ref. [11a], Scheme S1), might influence the stability of the various complexes and play a role in the Möbius ring reorganization. The influence of ZnII coordination on the intimate mechanism remains to be explored as well.
- 182D ROESY experiment at 330 K of a 1:1 mixture of RR-4.ZnOAc and RR-4.ZnNH2Bu revealed selective exchange correlations attesting their interconversion via Dynamic #1 process of Figure 2 a (Figure S68).
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.