Two Giant Calixarene-Like Polyoxoniobate Nanocups {Cu12Nb120} and {Cd16Nb128} Built from Mixed Macrocyclic Cluster Motifs
Zeng-Kui Zhu
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
These authors contributed equally to this work.
Search for more papers by this authorJing Zhang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
These authors contributed equally to this work.
Search for more papers by this authorYu-Chen Cong
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorRui Ge
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorZhong Li
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xin-Xiong Li
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shou-Tian Zheng
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorZeng-Kui Zhu
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
These authors contributed equally to this work.
Search for more papers by this authorJing Zhang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
These authors contributed equally to this work.
Search for more papers by this authorYu-Chen Cong
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorRui Ge
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorZhong Li
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xin-Xiong Li
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shou-Tian Zheng
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorAbstract
Cup-shaped molecules are of great interest due to their appealing architectures and properties. Compared with widely studied calixarenes, polyoxometalate-based cup-shaped molecules currently remain a virgin land waiting for exploration. In this work, we report the first discovery of two giant cup-shaped inorganic–organic hybrid polyoxoniobates (PONbs) of {Cu12Nb120} and {Cd16Nb128}. The former integrates three tricyclic Nb24 clusters and a hexacyclic Nb48 cluster into a cup-shaped molecule via a Cu12 metallacalixarene, while the latter unifies two tricyclic Nb24 clusters and a brand-new pentacyclic Nb40 cluster into another cup-shaped molecule via a hybrid Cd16 unit. With 132 and 144 metal centers, {Cu12Nb120} and {Cd16Nb128} show the largest two inorganic–organic hybrid PONbs known to date.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202113381-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC.-F. Chen, Y. Han, Acc. Chem. Res. 2018, 51, 2093–2106;
- 1bR. Kumar, A. Sharma, H. Singh, P. Suating, H. S. Kim, K. Sunwoo, I. Shim, B. C. Gibb, J. S. Kim, Chem. Rev. 2019, 119, 9657–9721.
- 2
- 2aK. Kobayashi, M. Yamanaka, Chem. Soc. Rev. 2015, 44, 449–466;
- 2bK. Twum, K. Rissanen, N. K. Beyeh, Chem. Rec. 2021, 21, 386–395;
- 2cN. Morohashi, F. Narumi, N. Iki, T. Hattori, S. Miyano, Chem. Rev. 2006, 106, 5291–5316.
- 3
- 3aP. J. Stang, D. H. Cao, K. Chen, G. M. Gray, D. C. Muddiman, R. D. Smith, J. Am. Chem. Soc. 1997, 119, 5163–5168;
- 3bP. Thanasekaran, C.-C. Lee, K.-L. Lu, Acc. Chem. Res. 2012, 45, 1403–1418.
- 4
- 4aC. D. Ene, A. M. Madalan, C. Maxim, B. Jurca, N. Avarvari, M. Andruh, J. Am. Chem. Soc. 2009, 131, 4586–4587;
- 4bD. Armentano, T. F. Mastropietro, M. Julve, R. Rossi, P. Rossi, G. De Munno, J. Am. Chem. Soc. 2007, 129, 2740–2741;
- 4cJ. Kulesza, B. S. Barros, S. Alves, Coord. Chem. Rev. 2013, 257, 2192–2212.
- 5
- 5aJ. Chen, M. K. Bera, H. Li, Y. Yang, X. Sun, J. Luo, J. Baughman, C. Liu, X. Yao, S. S. C. Chuang, T. Liu, Angew. Chem. Int. Ed. 2021, 60, 5833–5837; Angew. Chem. 2021, 133, 5897–5901.
- 6
- 6aJ. Lin, N. Li, S. Yang, M. Jia, J. Liu, X.-M. Li, L. An, Q. Tian, L.-Z. Dong, Y.-Q. Lan, J. Am. Chem. Soc. 2020, 142, 13982–13988;
- 6bS.-T. Zheng, J. Zhang, X.-X. Li, W.-H. Fang, G.-Y. Yang, J. Am. Chem. Soc. 2010, 132, 15102–15103;
- 6cY. Zhang, H. Gan, C. Qin, X. Wang, Z. Su, M. J. Zaworotko, J. Am. Chem. Soc. 2018, 140, 17365–17368;
- 6dJ. M. Breen, W. Schmitt, Angew. Chem. Int. Ed. 2008, 47, 6904–6908; Angew. Chem. 2008, 120, 7010–7014;
- 6eZ.-K. Zhu, Y.-Y. Lin, H. Yu, X.-X. Li, S.-T. Zheng, Angew. Chem. Int. Ed. 2019, 58, 16864–16868; Angew. Chem. 2019, 131, 17020–17024.
- 7
- 7aE. Garrido Ribó, N. L. Bell, W. Xuan, J. Luo, D.-L. Long, T. Liu, L. Cronin, J. Am. Chem. Soc. 2020, 142, 17508–17514;
- 7bW. Xuan, R. Pow, Q. Zheng, N. Watfa, D.-L. Long, L. Cronin, Angew. Chem. Int. Ed. 2019, 58, 10867–10872; Angew. Chem. 2019, 131, 10983–10988;
- 7cT. Minato, K. Suzuki, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2016, 55, 9630–9633; Angew. Chem. 2016, 128, 9782–9785;
- 7dZ.-K. Zhu, Y.-Y. Lin, X.-X. Li, D. Zhao, S.-T. Zheng, Inorg. Chem. Front. 2021, 8, 1297–1302;
- 7eC. Falaise, S. Khlifi, P. Bauduin, P. Schmid, W. Shepard, A. A. Ivanov, M. N. Sokolov, M. A. Shestopalov, P. A. Abramov, S. Cordier, J. Marrot, M. Haouas, E. Cadot, Angew. Chem. Int. Ed. 2021, 60, 14146–14153; Angew. Chem. 2021, 133, 14265–14272.
- 8
- 8aJ.-C. Liu, J.-F. Wang, Q. Han, P. Shangguan, L.-L. Liu, L.-J. Chen, J.-W. Zhao, C. Streb, Y.-F. Song, Angew. Chem. Int. Ed. 2021, 60, 11153–11157; Angew. Chem. 2021, 133, 11253–11257;
- 8bC. Li, K. Yamaguchi, K. Suzuki, Angew. Chem. Int. Ed. 2021, 60, 6960–6964; Angew. Chem. 2021, 133, 7036–7040;
- 8cS. Li, Y. Zhou, N. Ma, J. Zhang, Z. Zheng, C. Streb, X. Chen, Angew. Chem. Int. Ed. 2020, 59, 8537–8540; Angew. Chem. 2020, 132, 8615–8618.
- 9The CCDC numbers of 1 and 2 are 2111151 and 2111152, respectively.
- 10R. P. Bontchev, M. Nyman, Angew. Chem. Int. Ed. 2006, 45, 6670–6672; Angew. Chem. 2006, 118, 6822–6824.
- 11
- 11aG.-E. Wang, G. Xu, B.-W. Liu, M.-S. Wang, M.-S. Yao, G.-C. Guo, Angew. Chem. Int. Ed. 2016, 55, 514–518; Angew. Chem. 2016, 128, 524–528;
- 11bL. Qin, J. Singleton, W.-P. Chen, H. Nojiri, L. Engelhardt, R. E. P. Winpenny, Y.-Z. Zheng, Angew. Chem. Int. Ed. 2017, 56, 16571–16574; Angew. Chem. 2017, 129, 16798–16801;
- 11cI. Colliard, M. Nyman, Angew. Chem. Int. Ed. 2021, 60, 7308–7315; Angew. Chem. 2021, 133, 7384–7391.
- 12
- 12aG. A. Senchyk, E. M. Wylie, S. Prizio, J. E. S. Szymanowski, G. E. Sigmon, P. C. Burns, Chem. Commun. 2015, 51, 10134–10137;
- 12bE. Garrido Ribó, N. L. Bell, W. Xuan, J. Luo, D.-L. Long, T. Liu, L. Cronin, J. Am. Chem. Soc. 2020, 142, 17508–17514;
- 12cL. Chen, M. J. Turo, M. Gembicky, R. A. Reinicke, A. M. Schimpf, Angew. Chem. Int. Ed. 2020, 59, 16609–16615; Angew. Chem. 2020, 132, 16752–16758.
- 13I. D. Brown, D. Altermatt, Acta Crystallogr. Sect. B 1985, 41, 244–247.
- 14H. Lv, W. Guo, K. Wu, Z. Chen, J. Bacsa, D. G. Musaev, Y. V. Geletii, S. M. Lauinger, T. Lian, C. L. Hill, J. Am. Chem. Soc. 2014, 136, 14015–14018.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.