A Conjugated Figure-of-Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core
Lijie Zhan
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorChenshu Dai
State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorGuohui Zhang
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jun Zhu
State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Dr. Shaoguang Zhang
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Dr. Hua Wang
Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004 China
Search for more papers by this authorProf. Dr. Yi Zeng
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Dr. Chen-Ho Tung
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Dr. Li-Zhu Wu
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Huan Cong
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorLijie Zhan
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorChenshu Dai
State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorGuohui Zhang
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jun Zhu
State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Dr. Shaoguang Zhang
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Dr. Hua Wang
Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004 China
Search for more papers by this authorProf. Dr. Yi Zeng
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Dr. Chen-Ho Tung
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Dr. Li-Zhu Wu
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Huan Cong
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorAbstract
A fully conjugated figure-of-eight nanohoop is presented with facile synthesis. The molecule's lemniscular skeleton features the combination of two strained oligoparaphenylene loops and a flexible cyclooctatetrathiophene core. Its rigid yet guest-adaptive cavities enable the formation of the peanut-like 1:2 host–guest complexes with C60 or C70, which have been confirmed by X-ray crystallography and characterized in solution. Further computational studies suggest notable geometric variations and non-covalent interactions of the cavities upon binding with different fullerenes, as well as overall conjugation comparable to cycloparaphenylenes.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202113334-sup-0001-cif.zip2.4 MB | Supporting Information |
ange202113334-sup-0001-misc_information.pdf6.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Tahara, Y. Tobe, Chem. Rev. 2006, 106, 5274–5290;
- 1bY. Segawa, H. Ito, K. Itami, Nat. Rev. Mater. 2016, 1, 15002;
- 1cS. H. Pun, Q. Miao, Acc. Chem. Res. 2018, 51, 1630–1642;
- 1dC. Liu, Y. Ni, X. Lu, G. Li, J. Wu, Acc. Chem. Res. 2019, 52, 2309–2321;
- 1eM. A. Majewski, M. Stępień, Angew. Chem. Int. Ed. 2019, 58, 86–116; Angew. Chem. 2019, 131, 90–122;
- 1fT.-H. Shi, M.-X. Wang, CCS Chem. 2020, 2, 916–931;
- 1gK. Y. Cheung, Y. Segawa, K. Itami, Chem. Eur. J. 2020, 26, 14791–14801;
- 1hS. Mirzaei, E. Castro, R. H. Sánchez, Chem. Eur. J. 2021, 27, 8642–8655;
- 1iM. Jirásek, H. L. Anderson, M. D. Peeks, Acc. Chem. Res. 2021, 54, 3241–3251;
- 1jM. Hermann, D. Wassy, B. Esser, Angew. Chem. Int. Ed. 2021, 60, 15743–15766; Angew. Chem. 2021, 133, 15877–15900;
- 1kQ.-H. Guo, Y. Qiu, M.-X. Wang, J. F. Stoddart, Nat. Chem. 2021, 13, 402–419.
- 2
- 2aR. Hoffmann, H. Hopf, Angew. Chem. Int. Ed. 2008, 47, 4474–4481; Angew. Chem. 2008, 120, 4548–4556;
- 2bD. Eisenberg, R. Shenhar, M. Rabinovitz, Chem. Soc. Rev. 2010, 39, 2879–2890;
- 2cY. Segawa, A. Yagi, K. Matsui, K. Itami, Angew. Chem. Int. Ed. 2016, 55, 5136–5158; Angew. Chem. 2016, 128, 5222–5245.
- 3
- 3aE. S. Hirst, R. Jasti, J. Org. Chem. 2012, 77, 10473–10478;
- 3bS. E. Lewis, Chem. Soc. Rev. 2015, 44, 2221–2304;
- 3cE. R. Darzi, R. Jasti, Chem. Soc. Rev. 2015, 44, 6401–6410;
- 3dD. Wu, W. Cheng, X. Ban, J. Xia, Asian J. Org. Chem. 2018, 7, 2161–2181;
- 3eE. J. Leonhardt, R. Jasti, Nat. Rev. Chem. 2019, 3, 672–686;
- 3fY. Segawa, D. R. Levine, K. Itami, Acc. Chem. Res. 2019, 52, 2760–2767;
- 3gY. Li, H. Kono, T. Maekawa, Y. Segawa, A. Yagi, K. Itami, Acc. Mater. Res. 2021, 2, 681–691.
- 4
- 4aR. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi, J. Am. Chem. Soc. 2008, 130, 17646–17647;
- 4bH. Takaba, H. Omachi, Y. Yamamoto, J. Bouffard, K. Itami, Angew. Chem. Int. Ed. 2009, 48, 6112–6116; Angew. Chem. 2009, 121, 6228–6232;
- 4cS. Yamago, Y. Watanabe, T. Iwamoto, Angew. Chem. Int. Ed. 2010, 49, 757–759; Angew. Chem. 2010, 122, 769–771;
- 4dS. Hitosugi, T. Yamasaki, H. Isobe, J. Am. Chem. Soc. 2012, 134, 12442–12445;
- 4eM. Quernheim, F. E. Golling, W. Zhang, M. Wagner, H.-J. Räder, T. Nishiuchi, K. Müllen, Angew. Chem. Int. Ed. 2015, 54, 10341–10346; Angew. Chem. 2015, 127, 10482–10487;
- 4fM. R. Golder, C. E. Colwell, B. M. Wong, L. N. Zakharov, J. Zhen, R. Jasti, J. Am. Chem. Soc. 2016, 138, 6577–6582;
- 4gG. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi, K. Itami, Science 2017, 356, 172–175;
- 4hN. Hayase, J. Nogami, Y. Shibata, K. Tanaka, Angew. Chem. Int. Ed. 2019, 58, 9439–9442; Angew. Chem. 2019, 131, 9539–9542;
- 4iH. Chen, S. Gui, Y. Zhang, Z. Liu, Q. Miao, CCS Chem. 2020, 2, 613–619;
- 4jY. Li, Y. Segawa, A. Yagi, K. Itami, J. Am. Chem. Soc. 2020, 142, 12850–12856;
- 4kY. Tsuchido, R. Abe, T. Ide, K. Osakada, Angew. Chem. Int. Ed. 2020, 59, 22928–22932; Angew. Chem. 2020, 132, 23128–23132;
- 4lM. Hermann, D. Wassy, J. Kohn, P. Seitz, M. U. Betschart, S. Grimme, B. Esser, Angew. Chem. Int. Ed. 2021, 60, 10680–10689; Angew. Chem. 2021, 133, 10775–10784;
- 4mX.-S. Du, D.-W. Zhang, Y. Guo, J. Li, Y. Han, C.-F. Chen, Angew. Chem. Int. Ed. 2021, 60, 13021–13028; Angew. Chem. 2021, 133, 13131–13138;
- 4nS. Wang, J. Yuan, J. Xie, Z. Lu, L. Jiang, Y. Mu, Y. Huo, Y. Tsuchido, K. Zhu, Angew. Chem. Int. Ed. 2021, 60, 18443–18447; Angew. Chem. 2021, 133, 18591–18595;
- 4oL. Zhang, G. Zhang, H. Qu, Y. Todarwal, Y. Wang, P. Norman, M. Linares, M. Surin, H.-J. Zhang, J. Lin, Y.-B. Jiang, Angew. Chem. Int. Ed. 2021, 60, 24543–24548; Angew. Chem. 2021, 133, 24748–24753.
- 5
- 5aV. Haridas, H. Singh, Y. K. Sharma, K. Lal, J. Chem. Sci. 2007, 119, 219–230;
- 5bY. Si, G. Yang, New J. Chem. 2020, 44, 12185–12193;
- 5cH. Cong, Chem. Lett. 2021, 50, 819–824.
- 6
- 6aZ.-A. Huang, C. Chen, X.-D. Yang, X.-B. Fan, W. Zhou, C.-H. Tung, L.-Z. Wu, H. Cong, J. Am. Chem. Soc. 2016, 138, 11144–11147;
- 6bW. Xu, X.-D. Yang, X.-B. Fan, X. Wang, C.-H. Tung, L.-Z. Wu, H. Cong, Angew. Chem. Int. Ed. 2019, 58, 3943–3947; Angew. Chem. 2019, 131, 3983–3987;
- 6cK. Senthilkumar, M. Kondratowicz, T. Lis, P. J. Chmielewski, J. Cybińska, J. L. Zafra, J. Casado, T. Vives, J. Crassous, L. Favereau, M. Stępién, J. Am. Chem. Soc. 2019, 141, 7421–7427;
- 6dT. A. Schaub, E. A. Prantl, J. L. Kohn, M. Bursch, C. R. Marshall, E. J. Leonhardt, T. C. Lovell, L. N. Zakharov, C. K. Brozek, S. R. Waldvogel, S. Grimme, R. Jasti, J. Am. Chem. Soc. 2020, 142, 8763–8775;
- 6eK. Li, Z. Xu, H. Deng, Z. Zhou, Y. Dang, Z. Sun, Angew. Chem. Int. Ed. 2021, 60, 7649–7653; Angew. Chem. 2021, 133, 7727–7731;
- 6fY. Yang, O. Blacque, S. Sato, M. Juríček, Angew. Chem. Int. Ed. 2021, 60, 13529–13535; Angew. Chem. 2021, 133, 13641–13647;
- 6gX. Zhang, H. Shi, G. Zhuang, S. Wang, J. Wang, S. Yang, X. Shao, P. Du, Angew. Chem. Int. Ed. 2021, 60, 17368–17372; Angew. Chem. 2021, 133, 17508–17512;
- 6hY. Yang, S. Huangfu, S. Sato, M. Juríček, Org. Lett. 2021, 23, 7943–7948.
- 7For recent reports on guest-adaptive molecular hosts, see:
- 7aY. Tamura, H. Takezawa, M. Fujita, J. Am. Chem. Soc. 2020, 142, 5504–5508;
- 7bR. Frydrych, T. Lis, W. Bury, J. Cybińska, M. Stępień, J. Am. Chem. Soc. 2020, 142, 15604–15613;
- 7cJ. Wang, Y.-Y. Ju, K.-H. Low, Y.-Z. Tan, J. Liu, Angew. Chem. Int. Ed. 2021, 60, 11814–11818; Angew. Chem. 2021, 133, 11920–11924.
- 8
- 8aC. Zhao, L. Xu, Y. Wang, C. Li, H. Wang, Chin. J. Chem. 2015, 33, 71–78;
- 8bY. Wang, Y. Zhang, S. Wang, D. Cao, Chem. Eur. J. 2021, 27, 12012–12018.
- 9
- 9aY.-Y. Fan, D. Chen, Z.-A. Huang, J. Zhu, C.-H. Tung, L.-Z. Wu, H. Cong, Nat. Commun. 2018, 9, 3037;
- 9bY. Segawa, M. Kuwayama, Y. Hijikata, M. Fushimi, T. Nishihara, J. Pirillo, J. Shirasaki, N. Kubota, K. Itami, Science 2019, 365, 272–276.
- 10
- 10aT. Kawase, K. Tanaka, Y. Seirai, N. Shiono, M. Oda, Angew. Chem. Int. Ed. 2003, 42, 5597–5600; Angew. Chem. 2003, 115, 5755–5758;
- 10bS. Hitosugi, R. Iizuka, T. Yamasaki, R. Zhang, Y. Murata, H. Isobe, Org. Lett. 2013, 15, 3199–3201;
- 10cT. Matsuno, S. Sato, A. Yokoyama, S. Kamata, H. Isobe, Angew. Chem. Int. Ed. 2016, 55, 15339–15343; Angew. Chem. 2016, 128, 15565–15569;
- 10dD. Lu, G. Zhuang, H. Wu, S. Wang, S. Yang, P. Du, Angew. Chem. Int. Ed. 2017, 56, 158–162; Angew. Chem. 2017, 129, 164–168;
- 10eT. Matsuno, S. Kamata, S. Sato, A. Yokoyama, P. Sarkar, H. Isobe, Angew. Chem. Int. Ed. 2017, 56, 15020–15024; Angew. Chem. 2017, 129, 15216–15220;
- 10fJ. Rio, S. Beeck, G. Rotas, S. Ahles, D. Jacquemin, N. Tagmatarchis, C. Ewels, H. A. Wegner, Angew. Chem. Int. Ed. 2018, 57, 6930–6934; Angew. Chem. 2018, 130, 7046–7050;
- 10gS. Cui, G. Zhuang, D. Lu, Q. Huang, H. Jia, Y. Wang, S. Yang, P. Du, Angew. Chem. Int. Ed. 2018, 57, 9330–9335; Angew. Chem. 2018, 130, 9474–9479;
- 10hT. Matsuno, Y. Nakai, S. Sato, Y. Maniwa, H. Isobe, Nat. Commun. 2018, 9, 1907;
- 10iZ. Sun, K. Ikemoto, T. M. Fukunaga, T. Koretsune, R. Arita, S. Sato, H. Isobe, Science 2019, 363, 151–155;
- 10jZ. Sun, T. Mio, T. Okada, T. Matsuno, S. Sato, H. Kono, H. Isobe, Angew. Chem. Int. Ed. 2019, 58, 2040–2044; Angew. Chem. 2019, 131, 2062–2066;
- 10kY. Xu, M. V. Delius, Angew. Chem. Int. Ed. 2020, 59, 559–573; Angew. Chem. 2020, 132, 567–582;
- 10lJ. S. Wössner, D. Wassy, A. Weber, M. Bovenkerk, M. Hermann, M. Schmidt, B. Esser, J. Am. Chem. Soc. 2021, 143, 12244–12252.
- 11Y. Wang, D. Gao, J. Shi, Y. Kan, J. Song, C. Li, H. Wang, Tetrahedron 2014, 70, 631–636.
- 12T. J. Sisto, M. R. Golder, E. S. Hirst, R. Jasti, J. Am. Chem. Soc. 2011, 133, 15800–15802.
- 13E. R. Darzi, B. M. White, L. K. Loventhal, L. N. Zakharov, R. Jasti, J. Am. Chem. Soc. 2017, 139, 3106–3114.
- 14
- 14aT. Iwamoto, Y. Watanabe, T. Sadahiro, T. Haino, S. Yamago, Angew. Chem. Int. Ed. 2011, 50, 8342–8344; Angew. Chem. 2011, 123, 8492–8494;
- 14bJ. Xia, J. W. Bacon, R. Jasti, Chem. Sci. 2012, 3, 3018–3021;
- 14cT. Iwamoto, Y. Watanabe, H. Takaya, T. Haino, N. Yasuda, S. Yamago, Chem. Eur. J. 2013, 19, 14061–14068;
- 14dZ.-L. Qiu, C. Tang, X.-R. Wang, Y.-Y. Ju, K.-S. Chu, Z.-Y. Deng, H. Hou, Y.-M. Liu, Y.-Z. Tan, Angew. Chem. Int. Ed. 2020, 59, 20868–20872; Angew. Chem. 2020, 132, 21054–21058.
- 15
- 15aK. Yazaki, M. Akita, S. Prusty, D. K. Chand, T. Kikuchi, H. Sato, M. Yoshizawa, Nat. Commun. 2017, 8, 15914;
- 15bK. Matsumoto, S. Kusaba, Y. Tanaka, Y. Sei, M. Akita, K. Aritani, M. A. Haga, M. Yoshizawa, Angew. Chem. Int. Ed. 2019, 58, 8463–8467; Angew. Chem. 2019, 131, 8551–8555;
- 15cB. Chen, J. J. Holstein, S. Horiuchi, W. G. Hiller, G. H. Clever, J. Am. Chem. Soc. 2019, 141, 8907–8913.
- 16
- 16aT. C. Lovell, Z. R. Garrison, R. Jasti, Angew. Chem. Int. Ed. 2020, 59, 14363–14367; Angew. Chem. 2020, 132, 14469–14473;
- 16bC. Zhao, F. Liu, L. Feng, M. Nie, Y. Lu, J. Zhang, C. Wang, T. Wang, Nanoscale 2021, 13, 4880–4886.
- 17
- 17aM. Ueda, K. Jorner, Y. M. Sung, T. Mori, Q. Xiao, D. Kim, H. Ottosson, T. Aida, Y. Itoh, Nat. Commun. 2017, 8, 346;
- 17bZ. Zhao, X. Zheng, L. Du, Y. Xiong, W. He, X. Gao, C. Li, Y. Liu, B. Xu, J. Zhang, F. Song, Y. Yu, X. Zhao, Y. Cai, X. He, R. T. K. Kwok, J. W. Y. Lam, X. Huang, D. L. Phillips, H. Wang, B. Z. Tang, Nat. Commun. 2019, 10, 2952.
- 18D. Brynn Hibberta, P. Thordarson, Chem. Commun. 2016, 52, 12792–12805.
- 19E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498–6506.
- 20C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García, E. Hénon, Phys. Chem. Chem. Phys. 2017, 19, 17928–17936.
- 21
- 21aD. W. Szczepanik, M. Andrzejak, K. Dyduch, E. Żak, M. Makowski, G. Mazur, J. Mrozek, Phys. Chem. Chem. Phys. 2014, 16, 20514–20523;
- 21bD. W. Szczepanik, M. Andrzejak, J. Dominikowska, B. Pawełek, T. M. Krygowski, H. Szatylowicz, M. Solà, Phys. Chem. Chem. Phys. 2017, 19, 28970–28981.
- 22Z.-L. Qiu, D. Chen, Z. Deng, K.-S. Chu, Y.-Z. Tan, J. Zhu, Sci. China Chem. 2021, 64, 1004–1008.
- 23D. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758–3772.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.