Lactone Backbone Density in Rigid Electron-Deficient Semiconducting Polymers Enabling High n-type Organic Thermoelectric Performance
Corresponding Author
Maryam Alsufyani
Department of Chemistry, University of Oxford, Oxford, OX1 3TA UK
Search for more papers by this authorMarc-Antoine Stoeckel
Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
Search for more papers by this authorXingxing Chen
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorKarl Thorley
Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055 USA
Search for more papers by this authorRawad K. Hallani
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorYuttapoom Puttisong
Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
Search for more papers by this authorXudong Ji
Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorDilara Meli
Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorBryan D. Paulsen
Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorJoseph Strzalka
X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439 USA
Search for more papers by this authorKhrystyna Regeta
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCraig Combe
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorHu Chen
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorJunfu Tian
Department of Chemistry, University of Oxford, Oxford, OX1 3TA UK
Search for more papers by this authorProf. Jonathan Rivnay
Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Simpson Querrey Institute, Northwestern University, Chicago, IL 60611 USA
Search for more papers by this authorProf. Simone Fabiano
Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
Search for more papers by this authorCorresponding Author
Prof. Iain McCulloch
Department of Chemistry, University of Oxford, Oxford, OX1 3TA UK
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Maryam Alsufyani
Department of Chemistry, University of Oxford, Oxford, OX1 3TA UK
Search for more papers by this authorMarc-Antoine Stoeckel
Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
Search for more papers by this authorXingxing Chen
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorKarl Thorley
Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055 USA
Search for more papers by this authorRawad K. Hallani
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorYuttapoom Puttisong
Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
Search for more papers by this authorXudong Ji
Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorDilara Meli
Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorBryan D. Paulsen
Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorJoseph Strzalka
X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439 USA
Search for more papers by this authorKhrystyna Regeta
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCraig Combe
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorHu Chen
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorJunfu Tian
Department of Chemistry, University of Oxford, Oxford, OX1 3TA UK
Search for more papers by this authorProf. Jonathan Rivnay
Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Simpson Querrey Institute, Northwestern University, Chicago, IL 60611 USA
Search for more papers by this authorProf. Simone Fabiano
Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
Search for more papers by this authorCorresponding Author
Prof. Iain McCulloch
Department of Chemistry, University of Oxford, Oxford, OX1 3TA UK
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorAbstract
Three lactone-based rigid semiconducting polymers were designed to overcome major limitations in the development of n-type organic thermoelectrics, namely electrical conductivity and air stability. Experimental and theoretical investigations demonstrated that increasing the lactone group density by increasing the benzene content from 0 % benzene (P-0), to 50 % (P-50), and 75 % (P-75) resulted in progressively larger electron affinities (up to 4.37 eV), suggesting a more favorable doping process, when employing (N-DMBI) as the dopant. Larger polaron delocalization was also evident, due to the more planarized conformation, which is proposed to lead to a lower hopping energy barrier. As a consequence, the electrical conductivity increased by three orders of magnitude, to achieve values of up to 12 S cm and Power factors of 13.2 μWm−1 K−2 were thereby enabled. These findings present new insights into material design guidelines for the future development of air stable n-type organic thermoelectrics.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202113078-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. A. Mazzio, C. K. Luscombe, Chem. Soc. Rev. 2015, 44, 78–90.
- 2S. LeBlanc, Sustainable Mater. Technol. 2014, 1, 26–35.
10.1016/j.susmat.2014.11.002 Google Scholar
- 3
- 3aB. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, R. A. Segalman, Nat. Rev. Mater. 2016, 1, 16050;
- 3bM. Massetti, F. Jiao, A. J. Ferguson, D. Zhao, K. Wijeratne, A. Würger, J. L. Blackburn, X. Crispin, S. Fabiano, Chem. Rev. 2021, 121, 12465—12547.
- 4M. Goel, M. Thelakkat, Macromolecules 2020, 53, 3632–3642.
- 5C. J. Yao, H. L. Zhang, Q. Zhang, Polymers 2019, 11, 107.
- 6
- 6aO. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Nat. Mater. 2011, 10, 429–433;
- 6bG.-H. Kim, L. Shao, K. Zhang, K. P. Pipe, Nat. Mater. 2013, 12, 719–723;
- 6cY. Xia, K. Sun, J. Ouyang, Adv. Mater. 2012, 24, 2436–2440;
- 6dS. H. Lee, H. Park, S. Kim, W. Son, I. W. Cheong, J. H. Kim, J. Mater. Chem. A 2014, 2, 7288–7294.
- 7
- 7aY. Wang, M. Nakano, T. Michinobu, Y. Kiyota, T. Mori, K. Takimiya, Macromolecules 2017, 50, 857–864;
- 7bX. Yan, M. Xiong, J. T. Li, S. Zhang, Z. Ahmad, Y. Lu, Z. Y. Wang, Z. F. Yao, J. Y. Wang, X. Gu, T. Lei, J. Am. Chem. Soc. 2019, 141, 20215–20221;
- 7cK. Shi, F. Zhang, C. A. Di, T. W. Yan, Y. Zou, X. Zhou, D. Zhu, J. Y. Wang, J. Pei, J. Am. Chem. Soc. 2015, 137, 6979–6982;
- 7dY. Wang, K. Takimiya, Adv. Mater. 2020, 32, e2002060;
- 7eC. Dong, S. Deng, B. Meng, J. Liu, L. Wang, Angew. Chem. Int. Ed. 2021, 60, 16184–16190; Angew. Chem. 2021, 133, 16320–16326.
- 8
- 8aR. Yue, J. Xu, Synth. Met. 2012, 162, 912–917;
- 8bD. Kiefer, R. Kroon, A. I. Hofmann, H. Sun, X. Liu, A. Giovannitti, D. Stegerer, A. Cano, J. Hynynen, L. Yu, Nat. Mater. 2019, 18, 149–155;
- 8cH. Li, M. E. DeCoster, R. M. Ireland, J. Song, P. E. Hopkins, H. E. Katz, J. Am. Chem. Soc. 2017, 139, 11149–11157;
- 8dC.-K. Mai, R. A. Schlitz, G. M. Su, D. Spitzer, X. Wang, S. L. Fronk, D. G. Cahill, M. L. Chabinyc, G. C. Bazan, J. Am. Chem. Soc. 2014, 136, 13478–13481;
- 8eW. Shi, T. Zhao, J. Xi, D. Wang, Z. Shuai, J. Am. Chem. Soc. 2015, 137, 12929–12938;
- 8fS. N. Patel, A. M. Glaudell, K. A. Peterson, E. M. Thomas, K. A. O'Hara, E. Lim, M. L. Chabinyc, Sci. Adv. 2017, 3, e1700434.
- 9
- 9aY. Lu, Z. D. Yu, Y. Liu, Y. F. Ding, C. Y. Yang, Z. F. Yao, Z. Y. Wang, H. Y. You, X. F. Cheng, B. Tang, J. Y. Wang, J. Pei, J. Am. Chem. Soc. 2020, 142, 15340–15348;
- 9bB. D. Naab, X. Gu, T. Kurosawa, J. W. F. To, A. Salleo, Z. Bao, Adv. Electron. Mater. 2016, 2, 1600004;
- 9cR. A. Schlitz, F. G. Brunetti, A. M. Glaudell, P. L. Miller, M. A. Brady, C. J. Takacs, C. J. Hawker, M. L. Chabinyc, Adv. Mater. 2014, 26, 2825–2830;
- 9dY.-h. Shin, H. Komber, D. Caiola, M. Cassinelli, H. Sun, D. Stegerer, M. Schreiter, K. Horatz, F. Lissel, X. Jiao, C. R. McNeill, S. Cimò, C. Bertarelli, S. Fabiano, M. Caironi, M. Sommer, Macromolecules 2020, 53, 5158–5168;
- 9eS. Wang, H. Sun, U. Ail, M. Vagin, P. O. Persson, J. W. Andreasen, W. Thiel, M. Berggren, X. Crispin, D. Fazzi, S. Fabiano, Adv. Mater. 2016, 28, 10764–10771;
- 9fC. Y. Yang, W. L. Jin, J. Wang, Y. F. Ding, S. Nong, K. Shi, Y. Lu, Y. Z. Dai, F. D. Zhuang, T. Lei, C. A. Di, D. Zhu, J. Y. Wang, J. Pei, Adv. Mater. 2018, 30, e1802850;
- 9gK. Yang, X. Zhang, A. Harbuzaru, L. Wang, Y. Wang, C. Koh, H. Guo, Y. Shi, J. Chen, H. Sun, K. Feng, M. C. Ruiz Delgado, H. Y. Woo, R. P. Ortiz, X. Guo, J. Am. Chem. Soc. 2020, 142, 4329–4340;
- 9hX. Zhao, D. Madan, Y. Cheng, J. Zhou, H. Li, S. M. Thon, A. E. Bragg, M. E. DeCoster, P. E. Hopkins, H. E. Katz, Adv. Mater. 2017, 29, 1606928;
- 9iY. Lu, J.-Y. Wang, J. Pei, Chem. Mater. 2019, 31, 6412–6423.
- 10
- 10aD. Fazzi, M. Caironi, C. Castiglioni, J. Am. Chem. Soc. 2011, 133, 19056–19059;
- 10bG.-J. A. Wetzelaer, M. Kuik, Y. Olivier, V. Lemaur, J. Cornil, S. Fabiano, M. A. Loi, P. W. Blom, Phys. Rev. B 2012, 86, 165203;
- 10cL. Zhang, B. D. Rose, Y. Liu, M. M. Nahid, E. Gann, J. Ly, W. Zhao, S. J. Rosa, T. P. Russell, A. Facchetti, Chem. Mater. 2016, 28, 8580–8590;
- 10dB. J. Eckstein, F. S. Melkonyan, E. F. Manley, S. Fabiano, A. R. Mouat, L. X. Chen, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2017, 139, 14356–14359.
- 11
- 11aS. Wang, H. Sun, T. Erdmann, G. Wang, D. Fazzi, U. Lappan, Y. Puttisong, Z. Chen, M. Berggren, X. Crispin, A. Kiriy, B. Voit, T. J. Marks, S. Fabiano, A. Facchetti, Adv. Mater. 2018, 30, e1801898;
- 11bH. Jia, T. Lei, J. Mater. Chem. C 2019, 7, 12809–12821.
- 12S. Wang, D. Fazzi, Y. Puttisong, M. J. Jafari, Z. Chen, T. Ederth, J. W. Andreasen, W. M. Chen, A. Facchetti, S. Fabiano, Chem. Mater. 2019, 31, 3395–3406.
- 13
- 13aY. Lu, Z. D. Yu, R. Z. Zhang, Z. F. Yao, H. Y. You, L. Jiang, H. I. Un, B. W. Dong, M. Xiong, J. Y. Wang, J. Pei, Angew. Chem. Int. Ed. 2019, 58, 11390–11394; Angew. Chem. 2019, 131, 11512–11516;
- 13bH. Chen, M. Moser, S. Wang, C. Jellett, K. Thorley, G. T. Harrison, X. Jiao, M. Xiao, B. Purushothaman, M. Alsufyani, H. Bristow, S. De Wolf, N. Gasparini, A. Wadsworth, C. R. McNeill, H. Sirringhaus, S. Fabiano, I. McCulloch, J. Am. Chem. Soc. 2020, 142, 652–664.
- 14
- 14aM. Alsufyani, R. K. Hallani, S. Wang, M. Xiao, X. Ji, B. D. Paulsen, K. Xu, H. Bristow, H. Chen, X. Chen, H. Sirringhaus, J. Rivnay, S. Fabiano, I. McCulloch, J. Mater. Chem. C 2020, 8, 15150–15157;
- 14bK. Huang, G. Huang, X. Wang, H. Lu, G. Zhang, L. Qiu, ACS Appl. Mater. Interfaces 2020, 12, 17790–17798;
- 14cD. Qu, T. Qi, H. Huang, J. Energy Chem. 2021, 59, 364–387;
- 14dZ. Yuan, B. Fu, S. Thomas, S. Zhang, G. DeLuca, R. Chang, L. Lopez, C. Fares, G. Zhang, J.-L. Bredas, E. Reichmanis, Chem. Mater. 2016, 28, 6045–6049.
- 15J. Liu, Y. Shi, J. Dong, M. I. Nugraha, X. Qiu, M. Su, R. C. Chiechi, D. Baran, G. Portale, X. Guo, L. J. A. Koster, ACS Energy Lett. 2019, 4, 1556–1564.
- 16J. Liu, L. Qiu, R. Alessandri, X. Qiu, G. Portale, J. Dong, W. Talsma, G. Ye, A. A. Sengrian, P. C. T. Souza, M. A. Loi, R. C. Chiechi, S. J. Marrink, J. C. Hummelen, L. J. A. Koster, Adv. Mater. 2018, 30, 1704630.
- 17
- 17aJ. Liu, G. Ye, H. G. O. Potgieser, M. Koopmans, S. Sami, M. I. Nugraha, D. R. Villalva, H. Sun, J. Dong, X. Yang, X. Qiu, C. Yao, G. Portale, S. Fabiano, T. D. Anthopoulos, D. Baran, R. W. A. Havenith, R. C. Chiechi, L. J. A. Koster, Adv. Mater. 2020, e2006694;
- 17bD. Kiefer, A. Giovannitti, H. Sun, T. Biskup, A. Hofmann, M. Koopmans, C. Cendra, S. Weber, L. J. Anton Koster, E. Olsson, J. Rivnay, S. Fabiano, I. McCulloch, C. Muller, ACS Energy Lett. 2018, 3, 278–285.
- 18A. Babel, S. A. Jenekhe, J. Am. Chem. Soc. 2003, 125, 13656–13657.
- 19
- 19aY. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu, D. Zhu, J. Am. Chem. Soc. 2012, 134, 4084–4087;
- 19bF. Hinkel, J. Freudenberg, U. H. Bunz, Angew. Chem. Int. Ed. 2016, 55, 9830–9832; Angew. Chem. 2016, 128, 9984–9986;
- 19cJ. Hioe, D. Šakić, V. Vrček, H. Zipse, Org. Biomol. Chem. 2015, 13, 157–169.
- 20C.-Y. Yang, M.-A. Stoeckel, T.-P. Ruoko, H.-Y. Wu, X. Liu, N. B. Kolhe, Z. Wu, Y. Puttisong, C. Musumeci, M. Massetti, Nat. Commun. 2021, 12, 1–8.
- 21
- 21aA. Onwubiko, W. Yue, C. Jellett, M. Xiao, H. Y. Chen, M. K. Ravva, D. A. Hanifi, A. C. Knall, B. Purushothaman, M. Nikolka, J. C. Flores, A. Salleo, J. L. Bredas, H. Sirringhaus, P. Hayoz, I. McCulloch, Nat. Commun. 2018, 9, 416;
- 21bP. Singla, N. Van Steerteghem, N. Kaur, A. Z. Ashar, P. Kaur, K. Clays, K. S. Narayan, K. Singh, J. Mater. Chem. C 2017, 5, 697–708;
- 21cN. M. Randell, P. C. Boutin, T. L. Kelly, J. Mater. Chem. A 2016, 4, 6940–6945;
- 21dX. Chen, A. Marks, B. D. Paulsen, R. Wu, R. B. Rashid, H. Chen, M. Alsufyani, J. Rivnay, I. McCulloch, Angew. Chem. Int. Ed. 2021, 60, 9358–9373; Angew. Chem. 2021, 132, 9454–9459;
- 21eY. Deng, B. Sun, Y. He, J. Quinn, C. Guo, Y. Li, Chem. Commun. 2015, 51, 13515–13518.
- 22
- 22aP. Wei, T. Menke, B. D. Naab, K. Leo, M. Riede, Z. Bao, J. Am. Chem. Soc. 2012, 134, 3999–4002;
- 22bP. Wei, J. H. Oh, G. Dong, Z. Bao, J. Am. Chem. Soc. 2010, 132, 8852–8853.
- 23S. Riera-Galindo, A. Orbelli Biroli, A. Forni, Y. Puttisong, F. Tessore, M. Pizzotti, E. Pavlopoulou, E. Solano, S. Wang, G. Wang, ACS Appl. Mater. Interfaces 2019, 11, 37981–37990.
- 24A. Giovannitti, R. B. Rashid, Q. Thiburce, B. D. Paulsen, C. Cendra, K. Thorley, D. Moia, J. T. Mefford, D. Hanifi, D. Weiyuan, Adv. Mater. 2020, 32, 1908047.
- 25M. Moser, A. Savva, K. Thorley, B. D. Paulsen, T. C. Hidalgo, D. Ohayon, H. Chen, A. Giovannitti, A. Marks, N. Gasparini, A. Wadsworth, J. Rivnay, S. Inal, I. McCulloch, Angew. Chem. Int. Ed. 2021, 60, 7777–7785; Angew. Chem. 2021, 133, 7856–7864.
- 26S. Olthof, S. Mehraeen, S. K. Mohapatra, S. Barlow, V. Coropceanu, J.-L. Brédas, S. R. Marder, A. Kahn, Phys. Rev. Lett. 2012, 109, 176601.
- 27I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, A. J. Moulé, J. Mater. Chem. C 2016, 4, 3454–3466.
- 28V. Dusastre, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific, 2010.
10.1142/7848 Google Scholar
- 29D. De Leeuw, M. Simenon, A. Brown, R. Einerhand, Synth. Met. 1997, 87, 53–59.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.