Linear Extension of Anthracene via B←N Lewis Pair Formation: Effects on Optoelectronic Properties and Singlet O2 Sensitization
Dr. Mukundam Vanga
Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102 USA
Search for more papers by this authorAshutosh Sahoo
Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102 USA
Search for more papers by this authorProf. Dr. Roger A. Lalancette
Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Frieder Jäkle
Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102 USA
Search for more papers by this authorDr. Mukundam Vanga
Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102 USA
Search for more papers by this authorAshutosh Sahoo
Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102 USA
Search for more papers by this authorProf. Dr. Roger A. Lalancette
Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Frieder Jäkle
Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102 USA
Search for more papers by this authorAbstract
The functionalization of polycyclic aromatic hydrocarbons (PAHs) via B←N Lewis pair formation offers an opportunity to judiciously fine-tune the structural features and optoelectronic properties, to suit the demands of applications in organic electronic devices, bioimaging, and as sensitizers for singlet oxygen generation. We demonstrate that the N-directed electrophilic borylation of 2,6-di(pyrid-2-yl)anthracene offers access to linearly extended acene derivatives Py-BR (R=Et, Ph, C6F5). In comparison to indeno-fused 9,10-diphenylanthracene, the formal “BN for CC” replacement in Py-BR selectively lowers the LUMO, resulting in a much reduced HOMO–LUMO gap. An even more extended conjugated system with seven six-membered rings in a row (Qu-BEt) is obtained by borylation of 2,6-di(quinolin-8-yl)anthracene. Fluorinated Py-BPf shows particularly advantageous properties, including relatively lower-lying HOMO and LUMO levels, strong yellow-green fluorescence, and effective singlet oxygen sensitization, while resisting self-sensitized conversion to its endoperoxide.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202113075-sup-0001-cif.zip503.8 KB | Supporting Information |
ange202113075-sup-0001-misc_information.pdf6.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. E. Anthony, Chem. Rev. 2006, 106, 5028–5048;
- 1bJ. Wu, W. Pisula, K. Müllen, Chem. Rev. 2007, 107, 718–747;
- 1cA. Narita, X.-Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616–6643;
- 1dG. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 2018, 118, 3447–3507.
- 2
- 2aM. Stolar, T. Baumgartner, Chem. Asian J. 2014, 9, 1212–1225;
- 2bD. Joly, P.-A. Bouit, M. Hissler, J. Mater. Chem. C 2016, 4, 3686–3698;
- 2cR. Szűcs, P.-A. Bouit, L. Nyulászi, M. Hissler, ChemPhysChem 2017, 18, 2618–2630;
- 2dM. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117, 3479–3716;
- 2eT. Baumgartner, F. Jäkle, Main group strategies towards functional hybrid materials, Wiley, Hoboken, 2018;
- 2fF. Vidal, F. Jäkle, Angew. Chem. Int. Ed. 2019, 58, 5846–5870; Angew. Chem. 2019, 131, 5904–5929.
- 3
- 3aA. Escande, M. J. Ingleson, Chem. Commun. 2015, 51, 6257–6274;
- 3bH. Helten, Chem. Eur. J. 2016, 22, 12972–12982;
- 3cY. Ren, F. Jäkle, Dalton Trans. 2016, 45, 13996–14007;
- 3dL. Ji, S. Griesbeck, T. B. Marder, Chem. Sci. 2017, 8, 846–863;
- 3eZ. X. Giustra, S.-Y. Liu, J. Am. Chem. Soc. 2018, 140, 1184–1194;
- 3fE. von Grotthuss, A. John, T. Kaese, M. Wagner, Asian J. Org. Chem. 2018, 7, 37–53;
- 3gJ. Huang, Y. Li, Front. Chem. 2018, 6, 341;
- 3hH. Helten, Chem. Asian J. 2019, 14, 919–935;
- 3iS. K. Mellerup, S. Wang, Trends Chem. 2019, 1, 77–89.
- 4
- 4aC. Zhu, Z.-H. Guo, A. U. Mu, Y. Liu, S. E. Wheeler, L. Fang, J. Org. Chem. 2016, 81, 4347–4352;
- 4bK. K. Neena, P. Sudhakar, P. Thilagar, Angew. Chem. Int. Ed. 2018, 57, 16806–16810; Angew. Chem. 2018, 130, 17048–17052;
- 4cC. Li, Y. Liu, Z. Sun, J. Zhang, M. Liu, C. Zhang, Q. Zhang, H. Wang, X. Liu, Org. Lett. 2018, 20, 2806–2810;
- 4dT. Kaehler, M. Bolte, H.-W. Lerner, M. Wagner, Angew. Chem. Int. Ed. 2019, 58, 11379–11384; Angew. Chem. 2019, 131, 11501–11506;
- 4eY. Min, C. Dou, D. Liu, H. Dong, J. Liu, J. Am. Chem. Soc. 2019, 141, 17015–17021;
- 4fN. Ikeda, S. Oda, R. Matsumoto, M. Yoshioka, D. Fukushima, K. Yoshiura, N. Yasuda, T. Hatakeyama, Adv. Mater. 2020, 32, 2004072;
- 4gY. Chen, W. Chen, Y. Qiao, X. Lu, G. Zhou, Angew. Chem. Int. Ed. 2020, 59, 7122–7130; Angew. Chem. 2020, 132, 7188–7196;
- 4hK. E. Krantz, S. L. Weisflog, N. C. Frey, W. Yang, D. A. Dickie, C. E. Webster, R. J. Gilliard, Chem. Eur. J. 2020, 26, 10072–10082;
- 4iS. M. Suresh, D. Hall, D. Beljonne, Y. Olivier, E. Zysman-Colman, Adv. Funct. Mater. 2020, 30, 1908677;
- 4jM. Chen, K. S. Unikela, R. Ramalakshmi, B. Li, C. Darrigan, A. Chrostowska, S.-Y. Liu, Angew. Chem. Int. Ed. 2021, 60, 1556–1560; Angew. Chem. 2021, 133, 1580–1584;
- 4kN. Yan, W. Zhang, G. Li, S. Zhang, X. Yang, K. Zhou, D. Pei, Z. Zhao, G. He, Mater. Chem. Front. 2021, 5, 4128–4137;
- 4lC.-J. Sun, G. Meng, Y. Li, N. Wang, P. Chen, S. Wang, X. Yin, Inorg. Chem. 2021, 60, 1100–1107;
- 4mM. Ito, M. Sakai, N. Ando, S. Yamaguchi, Angew. Chem. Int. Ed. 2021, 60, 21853–21859; Angew. Chem. 2021, 133, 22024–22030;
- 4nY. Adachi, T. Nomura, S. Tazuhara, H. Naito, J. Ohshita, Chem. Commun. 2021, 57, 1316–1319;
- 4oY. Cao, C. Zhu, M. Barlóg, K. P. Barker, X. Ji, A. J. Kalin, M. Al-Hashimi, L. Fang, J. Org. Chem. 2021, 86, 2100–2106;
- 4pH. Choi, S. Ogi, N. Ando, S. Yamaguchi, J. Am. Chem. Soc. 2021, 143, 2953–2961.
- 5A. Haque, R. A. Al-Balushi, P. R. Raithby, M. S. Khan, Molecules 2020, 25, 2645.
- 6
- 6aA. C. Shaikh, D. S. Ranade, S. Thorat, A. Maity, P. P. Kulkarni, R. G. Gonnade, P. Munshi, N. T. Patil, Chem. Commun. 2015, 51, 16115–16118;
- 6bC. Zhu, L. Fang, Macromol. Rapid Commun. 2018, 39, 1700241.
- 7
- 7aM. Stolar, T. Baumgartner, Chem. Commun. 2018, 54, 3311–3322;
- 7bC. Dou, Z. Ding, Z. Zhang, Z. Xie, J. Liu, L. Wang, Angew. Chem. Int. Ed. 2015, 54, 3648–3652; Angew. Chem. 2015, 127, 3719–3723;
- 7cR. Zhao, C. Dou, Z. Xie, J. Liu, L. Wang, Angew. Chem. Int. Ed. 2016, 55, 5313–5317; Angew. Chem. 2016, 128, 5399–5403;
- 7dS. P. J. T. Bachollet, D. Volz, B. Fiser, S. Munch, F. Ronicke, J. Carrillo, H. Adams, U. Schepers, E. Gomez-Bengoa, S. Brase, J. P. A. Harrity, Chem. Eur. J. 2016, 22, 12430–12438;
- 7eC. Shen, M. Srebro-Hooper, M. Jean, N. Vanthuyne, L. Toupet, J. A. G. Williams, A. R. Torres, A. J. Riives, G. Muller, J. Autschbach, J. Crassous, Chem. Eur. J. 2017, 23, 407–418;
- 7fZ. Domínguez, R. López-Rodríguez, E. Alvarez, S. Abbate, G. Longhi, U. Pischel, A. Ros, Chem. Eur. J. 2018, 24, 12660–12668;
- 7gM. Grandl, J. Schepper, S. Maity, A. Peukert, E. von Hauff, F. Pammer, Macromolecules 2019, 52, 1013–1024;
- 7hS. Pang, M. Más-Montoya, M. Xiao, C. Duan, Z. Wang, X. Liu, R. A. J. Janssen, G. Yu, F. Huang, Y. Cao, Chem. Eur. J. 2019, 25, 564–572;
- 7iY. Li, H. Meng, T. Liu, Y. Xiao, Z. Tang, B. Pang, Y. Q. Li, Y. Xiang, G. Zhang, X. Lu, G. Yu, H. Yan, C. L. Zhan, J. Huang, J. Yao, Adv. Mater. 2019, 31, 1904585;
- 7jM. Vanga, S. Sa, A. Kumari, A. C. Murali, P. Nayak, R. Das, K. Venkatasubbaiah, Dalton Trans. 2020, 49, 7737–7746;
- 7kH. Lu, T. Nakamuro, K. Yamashita, H. Yanagisawa, O. Nureki, M. Kikkawa, H. Gao, J. Tian, R. Shang, E. Nakamura, J. Am. Chem. Soc. 2020, 142, 18990–18996;
- 7lJ. Full, S. P. Panchal, J. Götz, A. M. Krause, A. Nowak-Król, Angew. Chem. Int. Ed. 2021, 60, 4350–4357; Angew. Chem. 2021, 133, 4396–4403.
- 8
- 8aS. Wang, K. Yuan, M.-F. Hu, X. Wang, T. Peng, N. Wang, Q.-S. Li, Angew. Chem. Int. Ed. 2018, 57, 1073–1077; Angew. Chem. 2018, 130, 1085–1089;
- 8bS. K. Mellerup, S. Wang, Chem. Soc. Rev. 2019, 48, 3537–3549.
- 9
- 9aV. F. Pais, H. S. El-Sheshtawy, R. Fernandez, J. M. Lassaletta, A. Ros, U. Pischel, Chem. Eur. J. 2013, 19, 6650–6661;
- 9bV. F. Pais, J. M. Lassaletta, R. Fernandez, H. S. El-Sheshtawy, A. Ros, U. Pischel, Chem. Eur. J. 2014, 20, 7638–7645;
- 9cS. Schraff, Y. Sun, F. Pammer, J. Mater. Chem. C 2017, 5, 1730–1741;
- 9dH. Shimogawa, O. Yoshikawa, Y. Aramaki, M. Murata, A. Wakamiya, Y. Murata, Chem. Eur. J. 2017, 23, 3784–3791;
- 9eR. Koch, Y. Sun, A. Orthaber, A. J. Pierik, F. Pammer, Org. Chem. Front. 2020, 7, 1437–1452.
- 10
- 10aM. Yusuf, K. Liu, F. Guo, R. A. Lalancette, F. Jäkle, Dalton Trans. 2016, 45, 4580–4587;
- 10bK. Liu, R. A. Lalancette, F. Jäkle, J. Am. Chem. Soc. 2017, 139, 18170–18173;
- 10cA. F. Alahmadi, R. A. Lalancette, F. Jäkle, Macromol. Rapid Commun. 2018, 39, 1800456;
- 10dK. Liu, R. A. Lalancette, F. Jäkle, J. Am. Chem. Soc. 2019, 141, 7453–7462;
- 10eM. Vanga, R. A. Lalancette, F. Jäkle, Chem. Eur. J. 2019, 25, 10133–10140.
- 11S. A. Iqbal, J. Pahl, K. Yuan, M. J. Ingleson, Chem. Soc. Rev. 2020, 49, 4564–4591.
- 12G. E. Rudebusch, J. L. Zafra, K. Jorner, K. Fukuda, J. L. Marshall, I. Arrechea-Marcos, G. L. Espejo, R. P. Ortiz, C. J. Gomez-Garcia, L. N. Zakharov, M. Nakano, H. Ottosson, J. Casado, M. M. Haley, Nat. Chem. 2016, 8, 753–759.
- 13D. Lehnherr, R. Hallani, R. McDonald, J. E. Anthony, R. R. Tykwinski, Org. Lett. 2012, 14, 62–65.
- 14J.-Y. Balandier, N. Henry, J.-B. Arlin, L. Sanguinet, V. Lemaur, C. Niebel, B. Chattopadhyay, A. R. Kennedy, P. Leriche, P. Blanchard, J. Cornill, Y. H. Geerts, Org. Lett. 2013, 15, 302–305.
- 15R. A. I. Abou-Elkhair, D. W. Dixon, T. L. Netzel, J. Org. Chem. 2009, 74, 4712–4719.
- 16G. L. Schulz, M. Mastalerz, C.-Q. Ma, M. Wienk, R. Janssen, P. Bäuerle, Macromolecules 2013, 46, 2141–2151.
- 17M. Kondrashov, D. Provost, O. F. Wendt, Dalton Trans. 2016, 45, 525–531.
- 18N. Ishida, T. Moriya, T. Goya, M. Murakami, J. Org. Chem. 2010, 75, 8709–8712.
- 19D. L. Crossley, I. A. Cade, E. R. Clark, A. Escande, M. J. Humphries, S. M. King, I. Vitorica-Yrezabal, M. J. Ingleson, M. L. Turner, Chem. Sci. 2015, 6, 5144–5151.
- 20W. Fudickar, T. Linker, J. Org. Chem. 2017, 82, 9258–9262.
- 21Efficient self-sensitized endoperoxide formation with visible light has also been reported for anthracenes, in which the phenyl groups in 9,10-diphenylanthracene are fused to the anthracene backbone via O, S, C=O, or aryl bridges that result in planarized structures and red-shifted absorptions. See,
- 21aK. Schaffner, R. Schmidt, H.-D. Brauer, Mol. Cryst. Liq. Cryst. 1994, 246, 119–125;
- 21bM. Seip, H. D. Brauer, J. Am. Chem. Soc. 1992, 114, 4486–4490;
- 21cY. Yan, Z. A. Lamport, I. Kymissis, S. W. Thomas, J. Org. Chem. 2020, 85, 12731–12739.
- 22J.-M. Aubry, C. Pierlot, J. Rigaudy, R. Schmidt, Acc. Chem. Res. 2003, 36, 668–675.
- 23
- 23aS. Martins, J. P. S. Farinha, C. Baleizão, M. N. Berberan-Santos, Chem. Commun. 2014, 50, 3317–3320;
- 23bM. Klaper, T. Linker, J. Am. Chem. Soc. 2015, 137, 13744–13747;
- 23cZ. Yuan, S. Yu, F. Cao, Z. Mao, C. Gao, J. Ling, Polym. Chem. 2018, 9, 2124–2133;
- 23dE. Altinok, Z. C. Smith, S. W. Thomas, Macromolecules 2015, 48, 6825–6831.
- 24W. Fudickar, A. Fery, T. Linker, J. Am. Chem. Soc. 2005, 127, 9386–9387.
- 25Z. Gao, Y. Han, F. Wang, Nat. Commun. 2018, 9, 3977.
- 26
- 26aD. Zehm, W. Fudickar, T. Linker, Angew. Chem. Int. Ed. 2007, 46, 7689–7692; Angew. Chem. 2007, 119, 7833–7836;
- 26bD. Zehm, W. Fudickar, M. Hans, U. Schilde, A. Kelling, T. Linker, Chem. Eur. J. 2008, 14, 11429–11441.
- 27
- 27aC. Schweitzer, R. Schmidt, Chem. Rev. 2003, 103, 1685–1758;
- 27bM. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233–234, 351–371.
- 28
- 28aW. Fudickar, T. Linker, Chem. Commun. 2008, 1771–1773;
- 28bW. Fudickar, T. Linker, J. Am. Chem. Soc. 2012, 134, 15071–15082.
- 29Deposition Numbers 2108920 (Py-BEt) and 2108921 (Py-BPh) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.