An Activatable Hybrid Organic–Inorganic Nanocomposite as Early Evaluation System of Therapy Effect
Qinrui Fu
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorHongjuan Feng
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorLichao Su
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorXuan Zhang
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorLuntao Liu
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorProf. Fengfu Fu
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorProf. Huanghao Yang
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorCorresponding Author
Prof. Jibin Song
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorQinrui Fu
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorHongjuan Feng
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorLichao Su
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorXuan Zhang
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorLuntao Liu
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorProf. Fengfu Fu
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorProf. Huanghao Yang
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorCorresponding Author
Prof. Jibin Song
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorAbstract
Delays in evaluating cancer response to radiotherapy (RT) usually reduce therapy effect or miss the right time for treatment optimization. Hence, exploring timely and accurate methods enabling one to gain insights of RT response are highly desirable. In this study, we have developed an apoptosis enzyme (caspase-3) activated nanoprobe for early evaluation of RT efficacy. The nanoprobe bridged the nanogapped gold nanoparticles (AuNNPs) and the second near-infrared window (NIR-II) fluorescent (FL) molecules (IR-1048) through a caspase-3 specific peptide sequence (DEVD) (AuNNP@DEVD-IR1048). After X-ray irradiation, caspase-3 was activated to cut DEVD, turning on both NIR-II FL and PA imaging signals. The increased NIR-II FL/PA signals exhibited a positive correlation with the content of caspase-3. Moreover, the amount of the activated caspase-3 was negatively correlated with the tumor size. The results underscore the role of the caspase-3 activated by X-ray irradiation in bridging the imaging signals variation and tumor inhibition rate. Overall, activatable NIR-II FL/PA imaging was successfully used to timely predict and evaluate the RT efficacy. The evaluation system based on biomarker-triggered living imaging has the capacity to guide treatment decisions for numerous cancer types.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202112237-sup-0001-misc_information.pdf3.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. De Ruysscher, G. Niedermann, N. G. Burnet, S. Siva, A. W. M. Lee, F. Hegi-Johnson, Nat. Rev. Dis. Primers 2019, 5, 13.
- 2W. Ngwa, Nat. Biomed. Eng. 2018, 2, 562–563.
- 3S. W. Ryter, H. P. Kim, A. Hoetzel, J. W. Park, K. Nakahira, X. Wang, A. M. Choi, Antioxid. Redox Signaling 2007, 9, 49–89.
- 4X. Chen, J. Song, X. Chen, H. Yang, Chem. Soc. Rev. 2019, 48, 3073–3101.
- 5L. Surace, V. Lysenko, A. O. Fontana, V. Cecconi, H. Janssen, A. Bicvic, M. Okoniewski, M. Pruschy, R. Dummer, J. Neefjes, A. Knuth, A. Gupta, M. van den Broek, Immunity 2015, 42, 767–777.
- 6S. K. Paidi, P. M. Diaz, S. Dadgar, S. V. Jenkins, C. M. Quick, R. J. Griffin, R. P. M. Dings, N. Rajaram, I. Barman, Cancer Res. 2019, 79, 2054–2064.
- 7M. Kashani-Sabet, R. W. Sagebiel, C. M. M. Ferreira, M. Nosrati, J. R. Miller, J. Clin. Oncol. 2002, 20, 1826–1831.
- 8A. Cobos-Correa, J. B. Trojanek, S. Diemer, M. A. Mall, C. Schultz, Nat. Chem. Biol. 2009, 5, 628–630.
- 9Z. Zhou, H. Deng, W. Yang, Z. Wang, L. Lin, J. Munasinghe, O. Jacobson, Y. Liu, L. Tang, Q. Ni, F. Kang, Y. Liu, G. Niu, R. Bai, C. Qian, J. Song, X. Chen, Nat. Commun. 2020, 11, 3032.
- 10M. Krause, A. Dubrovska, A. Linge, M. Baumann, Adv. Drug Delivery Rev. 2017, 109, 63–73.
- 11N. A. Thornberry, Y. Lazebnik, Science 1998, 281, 1312–1316.
- 12Y. Wang, W. Gao, X. Shi, J. Ding, W. Liu, H. He, K. Wang, F. Shao, Nature 2017, 547, 99–103.
- 13D. Ye, A. J. Shuhendler, L. Cui, L. Tong, S. S. Tee, G. Tikhomirov, D. W. Felsher, J. Rao, Nat. Chem. 2014, 6, 519–526.
- 14Y. Wang, W. Du, T. Zhang, Y. Zhu, Y. Ni, C. Wang, F. M. Sierra Raya, L. Zou, L. Wang, G. Liang, ACS Nano 2020, 14, 9585–9593.
- 15R. Zheng, J. Yang, M. Mamuti, D.-Y. Hou, H. W. An, Y. Zhao, H. Wang, Angew. Chem. Int. Ed. 2021, 60, 7809–7819; Angew. Chem. 2021, 133, 7888–7898.
- 16H. Shi, R. T. Kwok, J. Liu, B. Xing, B. Z. Tang, B. Liu, J. Am. Chem. Soc. 2012, 134, 17972–17981.
- 17Y. Wang, X. Hu, J. Weng, J. Li, Q. Fan, Y. Zhang, D. Ye, Angew. Chem. Int. Ed. 2019, 58, 4886–4890; Angew. Chem. 2019, 131, 4940–4944.
- 18H. W. An, L. L. Li, Y. Wang, Z. Wang, D. Hou, Y. X. Lin, S. L. Qiao, M. D. Wang, C. Yang, Y. Cong, Y. Ma, X. X. Zhao, Q. Cai, W. T. Chen, C. Q. Lu, W. Xu, H. Wang, Y. Zhao, Nat. Commun. 2019, 10, 4861.
- 19Y. Yuan, Z. Ding, J. Qian, J. Zhang, J. Xu, X. Dong, T. Han, S. Ge, Y. Luo, Y. Wang, K. Zhong, G. Liang, Nano Lett. 2016, 16, 2686–2691.
- 20S. Mizukami, R. Takikawa, F. Sugihara, M. Shirakawa, K. Kikuchi, Angew. Chem. Int. Ed. 2009, 48, 3641–3643; Angew. Chem. 2009, 121, 3695–3697.
- 21B. Shen, J. Jeon, M. Palner, D. Ye, A. Shuhendler, F. T. Chin, J. Rao, Angew. Chem. Int. Ed. 2013, 52, 10511–10514; Angew. Chem. 2013, 125, 10705–10708.
- 22H. Li, G. Parigi, C. Luchinat, T. J. Meade, J. Am. Chem. Soc. 2019, 141, 6224–6233.
- 23J. Huang, J. Li, Y. Lyu, Q. Miao, K. Pu, Nat. Mater. 2019, 18, 1133–1143.
- 24G. Hong, A. L. Antaris, H. Dai, Nat. Biomed. Eng. 2017, 1, 0010.
- 25Q. Fu, R. Zhu, J. Song, H. Yang, X. Chen, Adv. Mater. 2019, 31, 1805875.
- 26J. Weber, P. C. Beard, S. E. Bohndiek, Nat. Methods 2016, 13, 639–650.
- 27L. V. Wang, S. Hu, Science 2012, 335, 1458–1462.
- 28Z. Hu, C. Fang, B. Li, Z. Zhang, C. Cao, M. Cai, S. Su, X. Sun, X. Shi, C. Li, T. Zhou, Y. Zhang, C. Chi, P. He, X. Xia, Y. Chen, S. S. Gambhir, Z. Cheng, J. Tian, Nat. Biomed. Eng. 2020, 4, 259–271.
- 29Y. Lyu, D. Cui, J. Huang, W. Fan, Y. Miao, K. Pu, Angew. Chem. Int. Ed. 2019, 58, 4983–4987; Angew. Chem. 2019, 131, 5037–5041.
- 30R. Chen, S. Huang, T. Lin, H. Ma, W. Shan, F. Duan, J. Lv, J. Zhang, L. Ren, L. Nie, Nat. Nanotechnol. 2021, 16, 455–465.
- 31Q. Miao, C. Xie, X. Zhen, Y. Lyu, H. Duan, X. Liu, J. V. Jokerst, K. Pu, Nat. Biotechnol. 2017, 35, 1102–1110.
- 32D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, I. C. Kwon, Chem. Soc. Rev. 2012, 41, 2656–2672.
- 33N. Kenry, Y. Duan, B. Liu, Adv. Mater. 2018, 30, 1802394.
- 34A. L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong, C. Qu, S. Diao, Z. Deng, X. Hu, B. Zhang, X. Zhang, O. K. Yaghi, Z. R. Alamparambil, X. Hong, Z. Cheng, H. Dai, Nat. Mater. 2016, 15, 235–242.
- 35Y. Fan, P. Wang, Y. Lu, R. Wang, L. Zhou, X. Zheng, X. Li, J. A. Piper, F. Zhang, Nat. Nanotechnol. 2018, 13, 941–946.
- 36S. Hou, Y. Chen, D. Lu, Q. Xiong, Y. Lim, H. Duan, Adv. Mater. 2020, 32, 1906475.
- 37J. Song, L. Cheng, A. Liu, J. Yin, M. Kuang, H. Duan, J. Am. Chem. Soc. 2011, 133, 10760–10763.
- 38R. Zhu, L. Su, J. Dai, Z. W. Li, S. Bai, Q. Li, X. Chen, J. Song, H. Yang, ACS Nano 2020, 14, 3991–4006.
- 39H. Feng, Q. Fu, W. Du, R. Zhu, X. Ge, C. Wang, Q. Li, L. Su, H. Yang, J. Song, ACS Nano 2021, 15, 3402–3414.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.