Klinische Entwicklung von Metallkomplexen als Photosensibilisatoren für die photodynamische Therapie von Krebs
Corresponding Author
Dr. Johannes Karges
Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 USA
Search for more papers by this authorCorresponding Author
Dr. Johannes Karges
Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 USA
Search for more papers by this authorAbstract
Krebs hat sich in den letzten Jahrzehnten zu einer der häufigsten krankheitsbedingten Todesursachen der Welt entwickelt. Neben den am häufigsten angewendeten Techniken (Chirurgie, Immuntherapie, Strahlentherapie oder Chemotherapie) wird der photodynamischen Therapie zunehmend Aufmerksamkeit gewidmet. Die überwiegende Mehrheit der klinisch eingesetzten Photosensibilisatoren ist jedoch nicht ideal und weist mehrere Einschränkungen auf, darunter schlechte Wasserlöslichkeit, schlechte Photostabilität und langsame Ausscheidung aus dem Körper, was zu Photosensibilität führt. In dem Bemühen, diese Nachteile zu überwinden, wird der Einbindung eines Metallions viel Aufmerksamkeit gewidmet. In diesem Kurzaufsatz wird die klinische Entwicklung von metallhaltigen Verbindungen wie Purlytin®, Lutrin®/Antrin®, Photosens®, TOOKAD® soluble oder TLD-1433 kritisch diskutiert.
Interessenkonflikt
Der Autor erklärt, dass keine Interessenkonflikte vorliegen.
References
- 1H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, CA Cancer J. Clin. 2021, 71, 209–249.
- 2
- 2aC. Holohan, S. Van Schaeybroeck, D. B. Longley, P. G. Johnston, Nat. Rev. Cancer 2013, 13, 714–726;
- 2bG. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre, N. Snyder, S. Sarkar, Cancers 2014, 6, 1769–1792;
- 2cJ. Karges, M. Tharaud, G. Gasser, J. Med. Chem. 2021, 64, 4612–4622;
- 2dA. Seluanov, V. N. Gladyshev, J. Vijg, V. Gorbunova, Nat. Rev. Cancer 2018, 18, 433–441.
- 3
- 3aD. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380–387;
- 3bA. P. Castano, P. Mroz, M. R. Hamblin, Nat. Rev. Cancer 2006, 6, 535–545;
- 3cT. J. Kinsella, V. C. Colussi, N. L. Oleinick, C. H. Sibata, Expert Opin. Pharmacother. 2001, 2, 917–927;
- 3dK. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich, Lasers Med. Sci. 2009, 24, 259–268;
- 3eJ. Karges, ChemBioChem 2020, 21, 3044–3046;
- 3fS. Callaghan, M. O. Senge, Photochem. Photobiol. Sci. 2018, 17, 1490–1514;
- 3gC. Imberti, P. Zhang, H. Huang, P. J. Sadler, Angew. Chem. Int. Ed. 2020, 59, 61–73; Angew. Chem. 2020, 132, 61–73;
- 3hH. Shi, P. J. Sadler, Br. J. Cancer 2020, 123, 871–873.
- 4U. O. Nseyo, J. DeHaven, T. J. Dougherty, W. R. Potter, D. L. Merrill, S. L. Lundahl, D. L. Lamm, J. Clin. Laser Med. Surg. 1998, 16, 61–68.
- 5S. Monro, K. L. Colón, H. Yin, J. Roque, P. Konda, S. Gujar, R. P. Thummel, L. Lilge, C. G. Cameron, S. A. McFarland, Chem. Rev. 2019, 119, 797–828.
- 6
- 6aK. Ogawa, Y. Kobuke, Anti-Cancer Agents Med. Chem. 2008, 8, 269–279;
- 6bB. C. Wilson, W. P. Jeeves, D. M. Lowe, Photochem. Photobiol. 1985, 42, 153–162.
- 7F. Heinemann, J. Karges, G. Gasser, Acc. Chem. Res. 2017, 50, 2727–2736.
- 8
- 8aS. Hatz, J. D. C. Lambert, P. R. Ogilby, Photochem. Photobiol. Sci. 2007, 6, 1106–1116;
- 8bS. Hatz, L. Poulsen, P. R. Ogilby, Photochem. Photobiol. 2008, 84, 1284–1290.
- 9
- 9aA. E. O′Connor, W. M. Gallagher, A. T. Byrne, Photochem. Photobiol. 2009, 85, 1053–1074;
- 9bR. Baskaran, J. Lee, S.-G. Yang, Biomater. Res. 2018, 22, 25;
- 9cD. Van Straten, V. Mashayekhi, H. S. De Bruijn, S. Oliveira, D. J. Robinson, Cancers 2017, 9, 19.
- 10P.-C. Lo, M. S. Rodríguez-Morgade, R. K. Pandey, D. K. P. Ng, T. Torres, F. Dumoulin, Chem. Soc. Rev. 2020, 49, 1041–1056.
- 11M. J. Kaplan, R. G. Somers, R. H. Greenberg, J. Ackler, J. Surg. Oncol. 1998, 67, 121–125.
10.1002/(SICI)1096-9098(199802)67:2<121::AID-JSO9>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 12T. S. Mang, R. Allison, G. Hewson, W. Snider, R. Moskowitz, Cancer J. Sci. Am. 1998, 4, 378–384.
- 13
- 13aH. Patel, R. Mick, J. Finlay, T. C. Zhu, E. Rickter, K. A. Cengel, S. B. Malkowicz, S. M. Hahn, T. M. Busch, Clin. Cancer Res. 2008, 14, 4869–4876;
- 13bJ. Finlay, T. Zhu, A. Dimofte, D. Stripp, S. Malkowicz, R. Whittington, J. Miles, E. Glatstein, S. Hahn, Proc. SPIE-Int. Soc. Opt. Eng. 2014, 5315, 132–142.
- 14V. V. Sokolov, V. I. Chissov, E. V. Filonenko, R. I. Yakubovskaya, G. M. Sukhin, M. G. Galpern, G. N. Vorozhtsov, A. V. Gulin, M. B. Zhitkova, N. N. Zharkova, D. N. Kozlov, V. V. Smirnov, Proc. SPIE 1995, 2325, 364–366.
10.1117/12.199168 Google Scholar
- 15V. Sokolov, V. Chissov, R. Yakubovskaya, E. Aristarkhova, E. Filonenko, T. Belous, G. Vorozhtsov, N. Zharkova, V. Smirnov, M. Zhitkova, Proc. SPIE 1996, 2625, 281–287.
- 16A. S. Brandis, Y. Salomon, A. Scherz, in Chlorophylls and Bacteriochlorophylls: Biochemistry Biophysics, Functions and Applications (Hrsg.: B. Grimm, R. J. Porra, W. Rüdiger, H. Scheer), Springer, Dordrecht, 2006, S. 485–494.
- 17
- 17aR. Weersink, B. Wilson, A. Bogaards, M. Gertner, S. Davidson, M. Haider, M. Elhilali, J. Trachtenberg, Proc. SPIE 2007, 6424, 64241E;
10.1117/12.704398 Google Scholar
- 17bJ. Trachtenberg, A. Bogaards, R. A. Weersink, M. A. Haider, A. Evans, S. A. McCluskey, A. Scherz, M. R. Gertner, C. Yue, S. Appu, A. Aprikian, J. Savard, B. C. Wilson, M. Elhilali, J. Urol. 2007, 178, 1974–1979;
- 17cR. A. Weersink, A. Bogaards, M. Gertner, S. R. H. Davidson, K. Zhang, G. Netchev, J. Trachtenberg, B. C. Wilson, J. Photochem. Photobiol. B 2005, 79, 211–222.
- 18J. Trachtenberg, R. A. Weersink, S. R. H. Davidson, M. A. Haider, A. Bogaards, M. R. Gertner, A. Evans, A. Scherz, J. Savard, J. L. Chin, B. C. Wilson, M. Elhilali, BJU Int. 2008, 102, 556–562.
- 19
- 19aT. Gheewala, T. Skwor, G. Munirathinam, Oncotarget 2017, 8, 30524–30538;
- 19bN. Arumainayagam, C. M. Moore, H. U. Ahmed, M. Emberton, World J. Urol. 2010, 28, 571–576.
- 20I. Ashur, R. Goldschmidt, I. Pinkas, Y. Salomon, G. Szewczyk, T. Sarna, A. Scherz, J. Phys. Chem. A 2009, 113, 8027–8037.
- 21
- 21aC. M. Moore, A. R. Azzouzi, E. Barret, A. Villers, G. H. Muir, N. J. Barber, S. Bott, J. Trachtenberg, N. Arumainayagam, B. Gaillac, BJU Int. 2015, 116, 888–896;
- 21bA. R. Azzouzi, E. Barret, J. Bennet, C. Moore, S. Taneja, G. Muir, A. Villers, J. Coleman, C. Allen, A. Scherz, M. Emberton, World J. Urol. 2015, 33, 945–953.
- 22A.-R. Azzouzi, S. Vincendeau, E. Barret, A. Cicco, F. Kleinclauss, H. G. van der Poel, C. G. Stief, J. Rassweiler, G. Salomon, E. Solsona, A. Alcaraz, T. T. Tammela, D. J. Rosario, F. Gomez-Veiga, G. Ahlgren, F. Benzaghou, B. Gaillac, B. Amzal, F. M. J. Debruyne, G. Fromont, C. Gratzke, M. Emberton, Lancet Oncol. 2017, 18, 181–191.
- 23
- 23aF. E. Poynton, S. A. Bright, S. Blasco, D. C. Williams, J. M. Kelly, T. Gunnlaugsson, Chem. Soc. Rev. 2017, 46, 7706–7756;
- 23bJ. Karges, F. Heinemann, M. Jakubaszek, F. Maschietto, C. Subecz, M. Dotou, R. Vinck, O. Blacque, M. Tharaud, B. Goud, E. Viñuelas Zahínos, B. Spingler, I. Ciofini, G. Gasser, J. Am. Chem. Soc. 2020, 142, 6578–6587.
- 24
- 24aR. Guan, L. Xie, L. Ji, H. Chao, Eur. J. Inorg. Chem. 2020, 3978–3986;
- 24bV. Novohradsky, A. Rovira, C. Hally, A. Galindo, G. Vigueras, A. Gandioso, M. Svitelova, R. Bresolí-Obach, H. Kostrhunova, L. Markova, J. Kasparkova, S. Nonell, J. Ruiz, V. Brabec, V. Marchán, Angew. Chem. Int. Ed. 2019, 58, 6311–6315; Angew. Chem. 2019, 131, 6377–6381.
- 25
- 25aD. Guo, S. Xu, Y. Huang, H. Jiang, W. Yasen, N. Wang, Y. Su, J. Qian, J. Li, C. Zhang, X. Zhu, Biomaterials 2018, 177, 67–77;
- 25bC. Vallotto, E. Shaili, H. Shi, J. S. Butler, C. J. Wedge, M. E. Newton, P. J. Sadler, Chem. Commun. 2018, 54, 13845–13848.
- 26
- 26aH. S. Liew, C.-W. Mai, M. Zulkefeli, T. Madheswaran, L. V. Kiew, N. Delsuc, M. L. Low, Molecules 2020, 25, 4176;
- 26bL. C.-C. Lee, K.-K. Leung, K. K.-W. Lo, Dalton Trans. 2017, 46, 16357–16380.
- 27
- 27aJ. A. Roque, P. C. Barrett, H. D. Cole, L. M. Lifshits, G. Shi, S. Monro, D. von Dohlen, S. Kim, N. Russo, G. Deep, C. G. Cameron, M. E. Alberto, S. A. McFarland, Chem. Sci. 2020, 11, 9784–9806;
- 27bP. Zhang, Y. Wang, K. Qiu, Z. Zhao, R. Hu, C. He, Q. Zhang, H. Chao, Chem. Commun. 2017, 53, 12341–12344.
- 28G. Shi, S. Monro, R. Hennigar, J. Colpitts, J. Fong, K. Kasimova, H. Yin, R. DeCoste, C. Spencer, L. Chamberlain, A. Mandel, L. Lilge, S. A. McFarland, Coord. Chem. Rev. 2015, 282–283, 127–138.
- 29S. A. McFarland, A. Mandel, R. Dumoulin-White, G. Gasser, Curr. Opin. Chem. Biol. 2020, 56, 23–27.
- 30A. B. Ariffin, P. F. Forde, S. Jahangeer, D. M. Soden, J. Hinchion, Cancer Res. 2014, 74, 2655–2662.
- 31R. Song, D. Hu, H. Y. Chung, Z. Sheng, S. Yao, ACS Appl. Mater. Interfaces 2018, 10, 36805–36813.
- 32Y. Cheng, H. Cheng, C. Jiang, X. Qiu, K. Wang, W. Huan, A. Yuan, J. Wu, Y. Hu, Nat. Commun. 2015, 6, 8785.
- 33W. Tang, Z. Zhen, M. Wang, H. Wang, Y.-J. Chuang, W. Zhang, G. D. Wang, T. Todd, T. Cowger, H. Chen, L. Liu, Z. Li, J. Xie, Adv. Funct. Mater. 2016, 26, 1757–1768.
- 34Z. Ma, X. Jia, J. Bai, Y. Ruan, C. Wang, J. Li, M. Zhang, X. Jiang, Adv. Funct. Mater. 2017, 27, 1604258.
- 35D.-W. Zheng, B. Li, C.-X. Li, J.-X. Fan, Q. Lei, C. Li, Z. Xu, X.-Z. Zhang, ACS Nano 2016, 10, 8715–8722.
- 36D. Xia, P. Xu, X. Luo, J. Zhu, H. Gu, D. Huo, Y. Hu, Adv. Funct. Mater. 2019, 29, 1807294.
- 37S. Y. Kimm, T. V. Tarin, S. Monette, G. Srimathveeravalli, D. Gerber, J. C. Durack, S. B. Solomon, P. T. Scardino, A. Scherz, J. Coleman, Radiology 2016, 281, 109–118.
- 38
- 38aN. Tian, W. Sun, X. Guo, J. Lu, C. Li, Y. Hou, X. Wang, Q. Zhou, Chem. Commun. 2019, 55, 2676–2679;
- 38bS. Kuang, L. Sun, X. Zhang, X. Liao, T. W. Rees, L. Zeng, Y. Chen, X. Zhang, L. Ji, H. Chao, Angew. Chem. Int. Ed. 2020, 59, 20697–20703; Angew. Chem. 2020, 132, 20878–20884.
- 39Y. Deng, F. Jia, S. Chen, Z. Shen, Q. Jin, G. Fu, J. Ji, Biomaterials 2018, 187, 55–65.
- 40H. Huang, S. Banerjee, K. Qiu, P. Zhang, O. Blacque, T. Malcomson, M. J. Paterson, G. J. Clarkson, M. Staniforth, V. G. Stavros, G. Gasser, H. Chao, P. J. Sadler, Nat. Chem. 2019, 11, 1041–1048.
- 41X. Song, C. Liang, H. Gong, Q. Chen, C. Wang, Z. Liu, Small 2015, 11, 3932–3941.
- 42Z.-h. Jin, N. Miyoshi, K. Ishiguro, S.-i. Umemura, K.-i. Kawabata, N. Yumita, I. Sakata, K. Takaoka, T. Udagawa, S. Nakajima, H. Tajiri, K. Ueda, M. Fukuda, M. Kumakiri, J. Dermatol. 2000, 27, 294–306.
- 43J. Karges, T. Yempala, M. Tharaud, D. Gibson, G. Gasser, Angew. Chem. Int. Ed. 2020, 59, 7069–7075; Angew. Chem. 2020, 132, 7135–7141.
- 44G. Yang, L. Xu, J. Xu, R. Zhang, G. Song, Y. Chao, L. Feng, F. Han, Z. Dong, B. Li, Z. Liu, Nano Lett. 2018, 18, 2475–2484.
- 45G. D. Wang, H. T. Nguyen, H. Chen, P. B. Cox, L. Wang, K. Nagata, Z. Hao, A. Wang, Z. Li, J. Xie, Theranostics 2016, 6, 2295–2305.
- 46
- 46aS. Xu, X. Zhu, C. Zhang, W. Huang, Y. Zhou, D. Yan, Nat. Commun. 2018, 9, 2053;
- 46bS. Bonnet, Dalton Trans. 2018, 47, 10330–10343;
- 46cB. M. Vickerman, E. M. Zywot, T. K. Tarrant, D. S. Lawrence, Nat. Rev. Chem. 2021, 5, 816–834.
- 47S. K. Pandey, A. L. Gryshuk, M. Sajjad, X. Zheng, Y. Chen, M. M. Abouzeid, J. Morgan, I. Charamisinau, H. A. Nabi, A. Oseroff, R. K. Pandey, J. Med. Chem. 2005, 48, 6286–6295.
- 48X. Yu, X. Liu, W. Wu, K. Yang, R. Mao, F. Ahmad, X. Chen, W. Li, Angew. Chem. Int. Ed. 2019, 58, 2017–2022; Angew. Chem. 2019, 131, 2039–2044.
- 49D. Aydın Tekdaş, R. Garifullin, B. Şentürk, Y. Zorlu, U. Gundogdu, E. Atalar, A. B. Tekinay, A. A. Chernonosov, Y. Yerli, F. Dumoulin, M. O. Guler, V. Ahsen, A. G. Gürek, Photochem. Photobiol. 2014, 90, 1376–1386.
- 50S. C. Hester, M. Kuriakose, C. D. Nguyen, S. Mallidi, Photochem. Photobiol. 2020, 96, 260–279.
- 51R. Smucler, M. Kriz, J. Lippert, M. Vlk, Photomed. Laser Surg. 2012, 30, 200–205.
- 52J. Karges, H. Chao, G. Gasser, J. Biol. Inorg. Chem. 2020, 25, 1035–1050.
- 53
- 53aF. Bolze, S. Jenni, A. Sour, V. Heitz, Chem. Commun. 2017, 53, 12857–12877;
- 53bJ. Karges, S. Kuang, F. Maschietto, O. Blacque, I. Ciofini, H. Chao, G. Gasser, Nat. Commun. 2020, 11, 3262;
- 53cA. Raza, S. A. Archer, S. D. Fairbanks, K. L. Smitten, S. W. Botchway, J. A. Thomas, S. MacNeil, J. W. Haycock, J. Am. Chem. Soc. 2020, 142, 4639–4647;
- 53dS. C. Boca, M. Four, A. Bonne, B. van der Sanden, S. Astilean, P. L. Baldeck, G. Lemercier, Chem. Commun. 2009, 4590–4592;
- 53eJ. Karges, S. Kuang, Y. C. Ong, H. Chao, G. Gasser, Chem. Eur. J. 2021, 27, 362–370.
- 54H. Cao, B. Fang, J. Liu, Y. Shen, J. Shen, P. Xiang, Q. Zhou, S. C. De Souza, D. Li, Y. Tian, L. Luo, Z. Zhang, X. Tian, Adv. Healthcare Mater. 2021, 10, 2001489.
- 55J. Karges, M. Jakubaszek, C. Mari, K. Zarschler, B. Goud, H. Stephan, G. Gasser, ChemBioChem 2020, 21, 531–542.
- 56Y. Huang, W. Huang, L. Chan, B. Zhou, T. Chen, Biomaterials 2016, 103, 183–196.
- 57L. N. Lameijer, S. L. Hopkins, T. G. Brevé, S. H. C. Askes, S. Bonnet, Chem. Eur. J. 2016, 22, 18484–18491.
- 58J. Karges, J. Li, L. Zeng, H. Chao, G. Gasser, ACS Appl. Mater. Interfaces 2020, 12, 54433–54444.
- 59V. Novohradsky, A. Zamora, A. Gandioso, V. Brabec, J. Ruiz, V. Marchán, Chem. Commun. 2017, 53, 5523–5526.
- 60P. Kaspler, S. Lazic, S. Forward, Y. Arenas, A. Mandel, L. Lilge, Photochem. Photobiol. Sci. 2016, 15, 481–495.
- 61J. Karges, D. Díaz-García, S. Prashar, S. Gómez-Ruiz, G. Gasser, ACS Appl. Biol. Mater. 2021, 4, 4394–4405.
- 62
- 62aG. Boeuf, G. V. Roullin, J. Moreau, L. Van Gulick, N. Zambrano Pineda, C. Terryn, D. Ploton, M. C. Andry, F. Chuburu, S. Dukic, M. Molinari, G. Lemercier, ChemPlusChem 2014, 79, 171–180;
- 62bN. Soliman, L. K. McKenzie, J. Karges, E. Bertrand, M. Tharaud, M. Jakubaszek, V. Guérineau, B. Goud, M. Hollenstein, G. Gasser, Chem. Sci. 2020, 11, 2657–2663.
- 63W. Sun, Y. Wen, R. Thiramanas, M. Chen, J. Han, N. Gong, M. Wagner, S. Jiang, M. S. Meijer, S. Bonnet, H.-J. Butt, V. Mailänder, X.-J. Liang, S. Wu, Adv. Funct. Mater. 2018, 28, 1804227.
- 64S. H. C. Askes, A. Bahreman, S. Bonnet, Angew. Chem. Int. Ed. 2014, 53, 1029–1033; Angew. Chem. 2014, 126, 1047–1051.
- 65R. Chen, J. Zhang, J. Chelora, Y. Xiong, S. V. Kershaw, K. F. Li, P.-K. Lo, K. W. Cheah, A. L. Rogach, J. A. Zapien, C.-S. Lee, ACS Appl. Mater. Interfaces 2017, 9, 5699–5708.
- 66F. Danhier, J. Controlled Release 2016, 244, 108–121.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.