Targeting RNA G-Quadruplex in SARS-CoV-2: A Promising Therapeutic Target for COVID-19?
Chuanqi Zhao
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorGeng Qin
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJingsheng Niu
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 P. R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorZhao Wang
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 P. R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorChunyu Wang
State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorProf. Jinsong Ren
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 P. R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiaogang Qu
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 P. R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorChuanqi Zhao
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorGeng Qin
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJingsheng Niu
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 P. R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorZhao Wang
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 P. R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorChunyu Wang
State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorProf. Jinsong Ren
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 P. R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiaogang Qu
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 P. R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorAbstract
The COVID-19 pandemic caused by SARS-CoV-2 has become a global threat. Understanding the underlying mechanisms and developing innovative treatments are extremely urgent. G-quadruplexes (G4s) are important noncanonical nucleic acid structures with distinct biofunctions. Four putative G4-forming sequences (PQSs) in the SARS-CoV-2 genome were studied. One of them (RG-1), which locates in the coding sequence region of SARS-CoV-2 nucleocapsid phosphoprotein (N), has been verified to form a stable RNA G4 structure in live cells. G4-specific compounds, such as PDP (pyridostatin derivative), can stabilize RG-1 G4 and significantly reduce the protein levels of SARS-CoV-2 N by inhibiting its translation both in vitro and in vivo. This result is the first evidence that PQSs in SARS-CoV-2 can form G4 structures in live cells, and that their biofunctions can be regulated by a G4-specific stabilizer. This finding will provide new insights into developing novel antiviral drugs against COVID-19.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202011419-sup-0001-misc_information.pdf6.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Zumla, J. F. Chan, E. I. Azhar, D. S. Hui, K. Y. Yuen, Nat. Rev. Drug Discovery 2016, 15, 327–347;
- 1bF. C. Zhu, Y. H. Li, X. H. Guan, L. H. Hou, W. J. Wang, J. X. Li, S. P. Wu, B. S. Wang, Z. Wang, L. Wang, S. Y. Jia, H. D. Jiang, L. Wang, T. Jiang, Y. Hu, J. B. Gou, S. B. Xu, J. J. Xu, X. W. Wang, W. Wang, W. Chen, Lancet 2020, 395, 1845–1854.
- 2
- 2aM. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler, N. H. Wu, A. Nitsche, M. A. Müller, C. Drosten, S. Pöhlmann, Cell 2020, 181, 271–280;
- 2bW. Yin, C. Mao, X. Luan, D.-D. Shen, Q. Shen, H. Su, X. Wang, F. Zhou, W. Zhao, M. Gao, S. Chang, Y.-C. Xie, G. Tian, H.-W. Jiang, S.-C. Tao, J. Shen, Y. Jiang, H. Jiang, Y. Xu, S. Zhang, Y. Zhang, H. E. Xu, Science 2020, 368, 1499–1504.
- 3E. Callaway, Nature 2020, 581, 363–364.
- 4M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao, Cell Res. 2020, 30, 269–271.
- 5
- 5aD. Rhodes, H. J. Lipps, Nucleic Acids Res. 2015, 43, 8627–8637;
- 5bA. Cammas, S. Millevoi, Nucleic Acids Res. 2016, 45, 1584–1595;
- 5cM. Y. Kim, H. Vankayalapati, K. Shin-Ya, K. Wierzba, L. H. Hurley, J. Am. Chem. Soc. 2002, 124, 2098–2099;
- 5dV. S. Chambers, G. Marsico, J. M. Boutell, M. Di Antonio, G. P. Smith, S. Balasubramanian, Nat. Biotechnol. 2015, 33, 877;
- 5eJ. T. Davis, Angew. Chem. Int. Ed. 2004, 43, 668–698; Angew. Chem. 2004, 116, 684–716.
- 6
- 6aR. Hänsel-Hertsch, M. Di Antonio, S. Balasubramanian, Nat. Rev. Mol. Cell Biol. 2017, 18, 279;
- 6bA. Shivalingam, M. A. Izquierdo, A. L. Marois, A. Vysniauskas, K. Suhling, M. K. Kuimova, R. Vilar, Nat. Commun. 2015, 6, 8178;
- 6cH. Qin, C. Zhao, Y. Sun, J. Ren, X. Qu, J. Am. Chem. Soc. 2017, 139, 16201–16209;
- 6dJ. Abraham Punnoose, Y. Ma, Y. Li, M. Sakuma, S. Mandal, K. Nagasawa, H. Mao, J. Am. Chem. Soc. 2017, 139, 7476–7484;
- 6eS. Neidle, Nat. Rev. Chem. 2017, 1, 0041;
- 6fH. Xu, M. Di Antonio, S. McKinney, V. Mathew, B. Ho, N. J. O'Neil, N. D. Santos, J. Silvester, V. Wei, J. Garcia, F. Kabeer, D. Lai, P. Soriano, J. Banáth, D. S. Chiu, D. Yap, D. D. Le, F. B. Ye, A. Zhang, K. Thu, J. Soong, S.-c. Lin, A. H. C. Tsai, T. Osako, T. Algara, D. N. Saunders, J. Wong, J. Xian, M. B. Bally, J. D. Brenton, G. W. Brown, S. P. Shah, D. Cescon, T. W. Mak, C. Caldas, P. C. Stirling, P. Hieter, S. Balasubramanian, S. Aparicio, Nat. Commun. 2017, 8, 14432.
- 7D. Piekna-Przybylska, M. A. Sullivan, G. Sharma, R. A. Bambara, Biochemistry 2014, 53, 2581–2593.
- 8S. Artusi, R. Perrone, S. Lago, P. Raffa, E. Di Iorio, G. Palù, S. N. Richter, Nucleic Acids Res. 2016, 44, 10343–10353.
- 9
- 9aK. Tlučková, M. Marušič, P. Tóthová, L. Bauer, P. Šket, J. Plavec, V. Viglasky, Biochemistry 2013, 52, 7207–7216;
- 9bB. C. Horsburgh, H. Kollmus, H. Hauser, D. M. Coen, Cell 1996, 86, 949–959.
- 10P. Murat, J. Zhong, L. Lekieffre, N. P. Cowieson, J. L. Clancy, T. Preiss, S. Balasubramanian, R. Khanna, J. Tellam, Nat. Chem. Biol. 2014, 10, 358–364.
- 11S.-R. Wang, Y.-Q. Min, J.-Q. Wang, C.-X. Liu, B.-S. Fu, F. Wu, L.-Y. Wu, Z.-X. Qiao, Y.-Y. Song, G.-H. Xu, Z.-G. Wu, G. Huang, N.-F. Peng, R. Huang, W.-X. Mao, S. Peng, Y.-Q. Chen, Y. Zhu, T. Tian, X.-L. Zhang, X. Zhou, Sci. Adv. 2016, 2, e1501535.
- 12M. Métifiot, S. Amrane, S. Litvak, M.-L. Andreola, Nucleic Acids Res. 2014, 42, 12352–12366.
- 13E. Ruggiero, S. N. Richter, Nucleic Acids Res. 2018, 46, 3270–3283.
- 14
- 14aN. Panera, A. E. Tozzi, A. Alisi, Drugs 2020, 80, 941–946;
- 14bD. Ji, M. Juhas, C. M. Tsang, C. K. Kwok, Y. Li, Y. Zhang, Brief Bioinform. 2020, https://doi.org/10.1093/bib/bbaa114;
- 14cM. Bartas, V. Brázda, N. Bohálová, A. Cantara, A. Volná, T. Stachurová, K. Malachová, E. B. Jagelská, O. Porubiaková, J. Červeň, P. Pečinka, Front. Front. Microbiol. 2020, 11, 1583;
- 14dC. Hognon, T. Miclot, C. García-Iriepa, A. Francés-Monerris, S. Grandemange, A. Terenzi, M. Marazzi, G. Barone, A. Monari, J. Phys. Chem. Lett. 2020, 11, 5661–5667.
- 15
- 15aJ. M. Garant, J. P. Perreault, M. S. Scott, Biochimie 2018, 151, 115–118;
- 15bO. Kikin, L. D'Antonio, P. S. Bagga, Nucleic Acids Res. 2006, 34, W676–682.
- 16
- 16aT. D. Schneider, R. M. Stephens, Nucleic Acids Res. 1990, 18, 6097–6100;
- 16bG. E. Crooks, G. Hon, J. M. Chandonia, S. E. Brenner, Genome Res. 2004, 14, 1188–1190.
- 17
- 17aA. Kreig, J. Calvert, J. Sanoica, E. Cullum, R. Tipanna, S. Myong, Nucleic Acids Res. 2015, 43, 7961–7970;
- 17bA. L. Moye, K. C. Porter, S. B. Cohen, T. Phan, K. G. Zyner, N. Sasaki, G. O. Lovrecz, J. L. Beck, T. M. Bryan, Nat. Commun. 2015, 6, 7643;
- 17cS. Xu, Q. Li, J. Xiang, Q. Yang, H. Sun, A. Guan, L. Wang, Y. Liu, L. Yu, Y. Shi, H. Chen, Y. Tang, Sci. Rep. 2016, 6, 24793;
- 17dC.-Y. Chan, C. K. Kwok, Angew. Chem. Int. Ed. 2020, 59, 5293–5297; Angew. Chem. 2020, 132, 5331–5335.
- 18S. Kumari, A. Bugaut, J. L. Huppert, S. Balasubramanian, Nat. Chem. Biol. 2007, 3, 218–221.
- 19R. del Villar-Guerra, J. O. Trent, J. B. Chaires, Angew. Chem. Int. Ed. 2018, 57, 7171–7175; Angew. Chem. 2018, 130, 7289–7293.
- 20
- 20aM. Adrian, B. Heddi, A. T. Phan, Methods 2012, 57, 11–24;
- 20bO. Binas, I. Bessi, H. Schwalbe, ChemBioChem 2020, 21, 1656–1663.
- 21A. T. Phan, J. L. Mergny, Nucleic Acids Res. 2002, 30, 4618–4625.
- 22A. Maity, F. R. Winnerdy, W. D. Chang, G. Chen, A. T. Phan, Nucleic Acids Res. 2020, 48, 3315–3327.
- 23
- 23aJ.-L. Mergny, L. Lacroix, Oligonucleotides 2003, 13, 515–537;
- 23bS. Nakano, D. Miyoshi, N. Sugimoto, Chem. Rev. 2014, 114, 2733–2758.
- 24R. Perrone, E. Butovskaya, D. Daelemans, G. Palù, C. Pannecouque, S. N. Richter, J. Antimicrob. Chemother. 2014, 69, 3248–3258.
- 25G. Biffi, M. Di Antonio, D. Tannahill, S. Balasubramanian, Nat. Chem. 2014, 6, 75–80.
- 26J. Song, J. P. Perreault, I. Topisirovic, S. Richard, Translation 2016, 4, e1244031.
- 27S. Stertz, M. Reichelt, M. Spiegel, T. Kuri, L. Martínez-Sobrido, A. García-Sastre, F. Weber, G. Kochs, Virology 2007, 361, 304–315.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.