Fluorogenic Probes/Inhibitors of β-Lactamase and their Applications in Drug-Resistant Bacteria
Yang Ding
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorZheng Li
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorChenchen Xu
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorWenjing Qin
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorProf. Qiong Wu
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorProf. Xuchun Wang
College of Chemistry and Material Engineering, University of Science and Technology of Anhui, Bengbu, 233000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiamin Cheng
Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Lin Li
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Wei Huang
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), Xi'an, 710072 P. R. China
Search for more papers by this authorYang Ding
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorZheng Li
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorChenchen Xu
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorWenjing Qin
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorProf. Qiong Wu
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorProf. Xuchun Wang
College of Chemistry and Material Engineering, University of Science and Technology of Anhui, Bengbu, 233000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiamin Cheng
Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Lin Li
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Wei Huang
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 P. R. China
Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), Xi'an, 710072 P. R. China
Search for more papers by this authorAbstract
β-Lactam antibiotics are generally perceived as one of the greatest inventions of the 20th century, and these small molecular compounds have saved millions of lives. However, upon clinical application of antibiotics, the β-lactamase secreted by pathogenic bacteria can lead to the gradual development of drug resistance. β-Lactamase is a hydrolase that can efficiently hydrolyze and destroy β-lactam antibiotics. It develops and spreads rapidly in pathogens, and the drug-resistant bacteria pose a severe threat to human health and development. As a result, detecting and inhibiting the activities of β-lactamase are of great value for the rational use of antibiotics and the treatment of infectious diseases. At present, many specific detection methods and inhibitors of β-lactamase have been developed and applied in clinical practice. In this Minireview, we describe the resistance mechanism of bacteria producing β-lactamase and further summarize the fluorogenic probes, inhibitors of β-lactamase, and their applications in the treatment of infectious diseases. It may be valuable to design fluorogenic probes with improved selectivity, sensitivity, and effectiveness to further identify the inhibitors for β-lactamases and eventually overcome bacterial resistance.
Conflict of interest
The authors declare no conflict of interest.
References
- 1M. J. Blaser, Science 2016, 352, 544–545.
- 2J. Davies, D. Davies, Microbiol. Mol. Biol. Rev. 2010, 74, 417–433.
- 3R. P. Elander, Appl. Microbiol. Biotechnol. 2003, 61, 385–392.
- 4M. Babic, A. M. Hujer, R. A. Bonomo, Drug Resist. Updates 2006, 9, 142–156.
- 5
- 5aE. P. Abraham, G. G. Newton, Biochem. J. 1954, 58, 94–102;
- 5bW. L. Parker, C. M. Cimarusti, D. M. Floyd, W. H. Koster, W. C. Liu, P. A. Principe, M. L. Rathnum, W. A. Slusarchyk, J. Antimicrob. Chemother. 1981, 8, 17–20;
- 5cG. G. Newton, E. P. Abraham, Biochem. J. 1956, 62, 651–658.
- 6S. B. Zaman, M. A. Hussain, R. Nye, V. Mehta, K. T. Mamun, N. Hossain, Cureus 2017, 9, e1403.
- 7
- 7aP. A. Bradford, Clin. Microbiol. Rev. 2001, 14, 933–951;
- 7bH. Nikaido, W. Liu, E. Y. Rosenberg, Antimicrob. Agents Chemother. 1990, 34, 337–342.
- 8
- 8aR. Laxminarayan, D. Sridhar, M. Blaser, M. Wang, M. Woolhouse, Science 2016, 353, 874–875;
- 8bK. Sciarretta, J. A. Røttingen, A. Opalska, A. J. Van Hengel, J. Larsen, Clin. Infect. Dis. 2016, 63, 1470–1474.
- 9X. Zeng, J. Lin, Front. Microbiol. 2013, 4, 128.
- 10K. Bush, Antimicrob. Agents Chemother. 2018, 62, e01076-18.
- 11C. I. R. Chandler, Palgtave Commun. 2019, 5, 53.
- 12
- 12aY. Cheng, J. Xie, K. H. Lee, R. L. Gaur, A. Song, T. Dai, H. Ren, J. Wu, Z. Sun, N. Banaei, D. Akin, J. Rao, Sci. Transl. Med. 2018, 10, eaar4470;
- 12bJ. D. Docquier, S. Mangani, Drug Resist. Updates 2018, 36, 13–29.
- 13
- 13aL. Li, X. Shen, Q. H. Xu, S. Q. Yao, Angew. Chem. Int. Ed. 2013, 52, 424–428; Angew. Chem. 2013, 125, 442–446;
- 13bL. Li, C. W. Zhang, J. Ge, L. Qian, B. H. Chai, Q. Zhu, J. S. Lee, K. L. Lim, S. Q. Yao, Angew. Chem. Int. Ed. 2015, 54, 10821–10825; Angew. Chem. 2015, 127, 10971–10975;
- 13cL. Li, C. W. Zhang, G. Y. Chen, B. Zhu, C. Chai, Q. H. Xu, E. K. Tan, Q. Zhu, K. L. Lim, S. Q. Yao, Nat. Commun. 2014, 5, 3276.
- 14
- 14aL. A. Miller, K. Ratnam, D. J. Payne, Curr. Opin. Pharmacol. 2001, 1, 451–458;
- 14bS. Biondi, S. Long, M. Panunzio, W. L. Qin, Curr. Med. Chem. 2011, 18, 4223–4236.
- 15I. Massova, S. Mobashery, Antimicrob. Agents Chemother. 1998, 42, 1–17.
- 16H. K. Allen, L. A. Moe, J. Rodbumrer, A. Gaarder, J. Handelsman, ISME J. 2009, 3, 243–251.
- 17R. Laxminarayan, P. Matsoso, S. Pant, C. Brower, J. A. Røttingen, K. Klugman, S. Davies, Lancet 2016, 387, 168–175.
- 18R. P. Ambler, Philos. Trans. R. Soc. London Ser. B 1980, 289, 321–331.
- 19K. Bush, G. A. Jacoby, A. A. Medeiros, Antimicrob. Agents Chemother. 1995, 39, 1211–1233.
- 20K. Bush, J. F. Fisher, Annu. Rev. Microbiol. 2011, 65, 455–478.
- 21
- 21aS. M. Drawz, R. A. Bonomo, Clin. Microbiol. Rev. 2010, 23, 160–201;
- 21bM. Bassetti, F. Ginocchio, M. Mikulska, L. Taramasso, D. R. Giacobbe, Expert Rev. Anti-Infect. Ther. 2011, 9, 909–922.
- 22
- 22aF. J. Pérez-Llarena, G. Bou, Curr. Med. Chem. 2009, 16, 3740–3765;
- 22bB. W. Roose, S. D. Zemerov, Y. Wang, M. A. Kasimova, V. Carnevale, I. J. Dmochowski, ChemPhysChem 2019, 20, 260–267.
- 23A. Philippon, P. Slama, P. Dény, R. Labia, Clin. Microbiol. Rev. 2016, 29, 29–57.
- 24G. Zafaralla, E. K. Manavathu, S. A. Lerner, S. Mobashery, Biochemistry 1992, 31, 3847–3852.
- 25N. C. Strynadka, H. Adachi, S. E. Jensen, K. Johns, A. Sielecki, C. Betzel, K. Sutoh, M. N. James, Nature 1992, 359, 700–705.
- 26Y. Yang, B. A. Rasmussen, D. M. Shlaes, Pharmacol. Ther. 1999, 83, 141–151.
- 27
- 27aM. Delaire, R. Labia, J. P. Samama, J. M. Masson, J. Biol. Chem. 1992, 267, 20600–20606;
- 27bC. Jelsch, L. Mourey, J. M. Masson, J. P. Samama, Proteins Struct. Funct. Genet. 1993, 16, 364–383.
- 28
- 28aI. Saves, O. Burlet-Schiltz, P. Swarén, F. Lefèvre, J. M. Masson, J. C. Promé, J. P. Samama, J. Biol. Chem. 1995, 270, 18240–18245;
- 28bP. Swarén, D. Golemi, S. Cabantous, A. Bulychev, L. Maveyraud, S. Mobashery, J. P. Samama, Biochemistry 1999, 38, 9570–9576.
- 29
- 29aX. Y. Zhou, F. Bordon, D. Sirot, M. D. Kitzis, L. Gutmann, Antimicrob. Agents Chemother. 1994, 38, 1085–1089;
- 29bJ. Blazquez, M. R. Baquero, R. Canton, I. Alos, F. Baquero, Antimicrob. Agents Chemother. 1993, 37, 2059–2063.
- 30
- 30aR. A. Bonomo, C. Currie-McCumber, D. M. Shlaes, FEMS Microbiol. Lett. 1992, 71, 79–82;
- 30bR. A. Bonomo, C. G. Dawes, J. R. Knox, D. M. Shlaes, Biochim. Biophys. Acta. 1995, 1247, 121–125.
- 31
- 31aE. Osano, Y. Arakawa, R. Wacharotayankun, M. Ohta, T. Horii, H. Ito, F. Yoshimura, N. Kato, Antimicrob. Agents Chemother. 1994, 38, 71–78;
- 31bB. A. Rasmussen, Y. Gluzman, F. P. Tally, Mol. Microbiol. 1991, 5, 1211–1219.
- 32
- 32aM. I. Abboud, C. Damblon, J. Brem, N. Smargiasso, P. Mercuri, B. Gilbert, A. M. Rydzik, T. D. Claridge, C. J. Schofield, J. M. Frère, Antimicrob. Agents Chemother. 2016, 60, 5655–5662;
- 32bA. U. Khan, L. Maryam, R. Zarrilli, BMC Microbiol. 2017, 17, 101.
- 33
- 33aM. W. Crowder, J. Spencer, A. J. Vila, Acc. Chem. Res. 2006, 39, 721–728;
- 33bG. Garau, C. Bebrone, C. Anne, M. Galleni, J. M. Frère, O. Dideberg, J. Mol. Biol. 2005, 345, 785–795.
- 34
- 34aC. Pozzi, F. Di Pisa, F. De Luca, M. Benvenuti, J. D. Docquier, S. Mangani, ChemMedChem 2018, 13, 1437–1446;
- 34bK. Babaoglu, A. Simeonov, J. J. Irwin, M. E. Nelson, B. Feng, C. J. Thomas, L. Cancian, M. P. Costi, D. A. Maltby, A. Jadhav, J. Inqlese, C. P. Austin, B. K. Shoichet, J. Med. Chem. 2008, 51, 2502–2511.
- 35G. B. Tian, J. M. Adams-Haduch, M. Taracila, R. A. Bonomo, H. N. Wang, Y. Doi, Antimicrob. Agents Chemother. 2011, 55, 4922–4925.
- 36Y. Chen, G. Minasov, T. A. Roth, F. Prati, B. K. Shoichet, J. Am. Chem. Soc. 2006, 128, 2970–2976.
- 37P. Ledent, X. Raquet, B. Joris, J. Van Beeumen, J. M. Frère, Biochem. J. 1993, 292, 555–562.
- 38
- 38aD. A. Leonard, A. M. Hujer, B. A. Smith, K. D. Schneider, C. R. Bethel, K. M. Hujer, R. A. Bonomo, Biochem. J. 2008, 410, 455–462;
- 38bT. Sun, M. Nukaga, K. Mayama, E. H. Braswell, J. R. Knox, Protein Sci. 2003, 12, 82–91.
- 39F. De Luca, M. Benvenuti, F. Carboni, C. Pozzi, G. M. Rossolini, S. Mangani, J. D. Docquier, Proc. Natl. Acad. Sci. USA 2011, 108, 18424–18429.
- 40
- 40aA. Potron, D. Hocquet, P. Triponney, P. Plésiat, X. Bertrand, B. Valot, Antimicrob. Agents Chemother. 2019, 63, e00191-19;
- 40bT. Pillonel, P. Nordmann, C. Bertelli, G. Prod'Hom, L. Poirel, G. Greub, Antimicrob. Agents Chemother. 2018, 62, e00076-18;
- 40cP. Ma, H. H. Laibinis, C. M. Ernst, D. T. Hung, Antimicrob. Agents Chemother. 2018, 62, e01281-18;
- 40dE. Literacka, R. Izdebski, A. Baraniak, D. Żabicka, A. Schneider, P. Urbanowicz, M. Herda, W. Hryniewicz, M. Gniadkowski, Antimicrob. Agents Chemother. 2019, 63, e00106-19.
- 41
- 41aS. Baurin, L. Vercheval, F. Bouillenne, C. Falzone, A. Brans, L. Jacquamet, J. L. Ferrer, E. Sauvage, D. Dehareng, J. M. Frère, P. Charlier, M. Galleni, F. Kerff, Biochemistry 2009, 48, 11252–11263;
- 41bM. Paetzel, F. Danel, L. de Castro, S. C. Mosimann, M. G. Page, N. C. Strynadka, Nat. Struct. Biol. 2000, 7, 918–925;
- 41cF. Danel, L. M. Hall, D. M. Livermore, J. Antimicrob. Chemother. 1999, 43, 339–344.
- 42D. Golemi, L. Maveyraud, S. Vakulenko, J. P. Samama, S. Mobashery, Proc. Natl. Acad. Sci. USA 2001, 98, 14280–14285.
- 43J. S. Buchman, K. D. Schneider, A. R. Lloyd, S. L. Pavlish, D. A. Leonard, Biochemistry 2015, 51, 3143–3150.
- 44
- 44aP. Nordmann, M. Gniadkowski, C. G. Giske, L. Poirel, N. Woodford, V. Miriagou; European Network on Carbapenemases, Clin. Microbiol. Infect. 2012, 18, 432–438;
- 44bS. Bernabeu, L. Poirel, P. Nordmann, Diagn. Microbiol. Infect. Dis. 2012, 74, 88–90;
- 44cJ. Cohen Stuart, M. A. Leverstein-Van Hall; Dutch Working Party on the Detection of Highly Resistant Microorganisms, Int. J. Antimicrob. Agents 2010, 36, 205–210;
- 44dY. Arakawa, N. Shibata, K. Shibayama, H. Kurokawa, T. Yagi, H. Fujiwara, M. Goto, J. Clin. Microbiol. 2000, 38, 40–43.
- 45H. Savli, A. Karadenizli, F. Kolayli, S. Gundes, U. Ozbek, H. Vahaboglu, J. Med. Microbiol. 2003, 52, 403–408.
- 46J. Ma, S. McLeod, K. MacCormack, S. Sriram, N. Gao, A. L. Breeze, J. Hu, Angew. Chem. Int. Ed. 2014, 53, 2130–2133; Angew. Chem. 2014, 126, 2162–2165.
- 47
- 47aD. M. Leinberger, V. Grimm, M. Rubtsova, J. Weile, K. Schröppel, T. A. Wichelhaus, C. Knabbe, R. D. Schmid, T. T. Bachmann, J. Clin. Microbiol. 2010, 48, 460–471;
- 47bA. Sundsfjord, G. S. Simonsen, B. C. Haldorsen, H. Haaheim, S. O. Hjelmevoll, P. Littauer, K. H. Dahl, APMIS 2004, 112, 815–837.
- 48
- 48aH. Xie, J. Mire, Y. Kong, M. Chang, H. A. Hassounah, C. N. Thornton, J. C. Sacchettini, J. D. Cirillo, J. Rao, Nat. Chem. 2012, 4, 802–809;
- 48bJ. Zhang, Y. Shen, S. L. May, D. C. Nelson, S. Li, Angew. Chem. Int. Ed. 2012, 51, 1865–1868; Angew. Chem. 2012, 124, 1901–1904.
- 49U. Theuretzbacher, Clin. Microbiol. Infect. 2017, 23, 695–696.
- 50G. Zlokarnik, P. A. Negulescu, T. E. Knapp, L. Mere, N. Burres, L. Feng, M. Whitney, K. Roemer, R. Y. Tsien, Science 1998, 279, 84–88.
- 51W. Gao, B. Xing, R. Y. Tsien, J. Rao, J. Am. Chem. Soc. 2003, 125, 11146–11147.
- 52B. Xing, A. Khanamiryan, J. Rao, J. Am. Chem. Soc. 2005, 127, 4158–4159.
- 53L. Li, Z. Li, W. Shi, X. Li, H. Ma, Anal. Chem. 2014, 86, 6115–6120.
- 54J. Aw, F. Widjaja, Y. Ding, J. Mu, Y. Liang, B. Xing, Chem. Commun. 2017, 53, 3330–3333.
- 55Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, J. D. Cirillo, Proc. Natl. Acad. Sci. USA 2010, 107, 12239–12244.
- 56Y. Cheng, H. Xie, P. Sule, H. Hassounah, E. A. Graviss, Y. Kong, J. D. Cirillo, J. Rao, Angew. Chem. Int. Ed. 2014, 53, 9360–9364; Angew. Chem. 2014, 126, 9514–9518.
- 57
- 57aZ. Cheng, P. W. Thomas, L. Ju, A. Bergstrom, K. Mason, D. Clayton, C. Miller, C. R. Bethel, J. VanPelt, D. L. Tierney, R. C. Page, R. A. Bonoma, W. Fast, M. W. Crowder, J. Biol. Chem. 2018, 293, 12606–12618;
- 57bR. C. Moellering Jr, N. Engl. J. Med. 2010, 363, 2377–2379.
- 58
- 58aS. P. van Rijn, M. A. Zuur, R. Anthony, B. Wilffert, R. van Altena, O. W. Akkerman, W. C. M. de Lange, T. S. van der Werf, J. G. W. Kosterink, J. C. Alffenaar, Antimicrob. Agents Chemother. 2019, 63, e01489-18;
- 58bK. M. Papp-Wallace, A. Endimiani, M. A. Taracila, R. A. Bonomo, Antimicrob. Agents Chemother. 2011, 55, 4943–4960.
- 59H. Shi, Y. Cheng, K. H. Lee, R. F. Luo, N. Banaei, J. Rao, Angew. Chem. Int. Ed. 2014, 53, 8113–8116; Angew. Chem. 2014, 126, 8251–8254.
- 60
- 60aW. Mao, L. Xia, H. Xie, Angew. Chem. Int. Ed. 2017, 56, 4468–4472; Angew. Chem. 2017, 129, 4539–4543;
- 60bW. Mao, Y. Wang, X. Qian, L. Xia, H. Xie, ChemBioChem 2019, 20, 511–515.
- 61S. Das, J. Ihssen, L. Wick, U. Spitz, D. Shabat, Chem. Eur. J. 2020, 26, 3647–3652.
- 62N. W. Polaske, B. D. Kelly, J. Ashworth-Sharpe, C. Bieniarz, Bioconjugate Chem. 2016, 27, 660–666.
- 63Q. Shao, Y. Zheng, X. Dong, K. Tang, X. Yan, B. Xing, Chem. Eur. J. 2013, 19, 10903–10910.
- 64W. Mao, L. Xia, Y. Wang, H. Xie, Chem. Asian J. 2016, 11, 3493–3497.
- 65D. Lingwood, K. Simons, Science 2010, 327, 46–50.
- 66H. L. Chan, L. Lyu, J. Aw, W. Zhang, J. Li, H. Yang, H. Hayashi, S. Chiba, B. Xing, ACS Chem. Biol. 2018, 13, 1890–1896.
- 67H. Getahun, A. Matteelli, I. Abubakar, M. A. Aziz, A. Baddeley, D. Barreira, S. Den Boon, S. M. B. Gutierrez, J. Bruchfeld, E. Burhan, S. Cavalcante, R. Cedillos, R. Chaisson, C. B. Chee, L. Chesire, E. Corbett, M. Dara, J. Denholm, G. de Vries, D. Falzon, N. Ford, M. Gale-Rowe, C. Gilpin, E. Girardi, U. Y. Go, D. Govindasamy, A. D. Grant, M. Grzemska, R. Harris, C. R. Horsburgh, Jr., A. Ismayilov, E. Jaramillo, S. Kik, K. Kranzer, C. Lienhardt, P. LoBue, K. Lönnroth, G. Marks, D. Menzies, G. B. Migliori, D. Mosca, Y. D. Mukadi, A. Mwinga, L. Nelson, N. Nishikiori, A. Oordt-Speets, M. X. Rangaka, A. Reis, L. Rotz, A. Sandgren, M. Sañé Schepisi, H. J. Schünemann, S. K. Sharma, G. Sotgiu, H. R. Stagg, T. R. Sterling, T. Tayeb, M. Uplekar, M. J. van der Werf, W. Vandevelde, F. van Kessel, A. van't Hoog, J. K. Varma, N. Vezhnina, C. Voniatis, M. Vonk Noordegraaf-Schouten, D. Weil, K. Weyer, R. J. Wilkinson, T. Yoshiyama, J. P. Zellweger, M. Raviglione, Eur. Respir. J. 2015, 46, 1563–1576.
- 68
- 68aB. T. Nyang′wa, C. Berry, K. Fielding, A. J. Nunn, Lancet 2019, 394, 298–299;
- 68bE. Tacconelli, E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson, D. L. Monnet, C. Pulcini, G. Kahlmeter, Y. Carmeli, M. Ouellette, K. Outterson, J. Patel, M. Cavaleri, E. M. Cox, C. R. Houchens, M. L. Grayson, P. Hansen, N. Singh, U. Theuretzbacher, N. Magrini; WHO Pathogens Priority List Working Group, Lancet Infect. Dis. 2018, 18, 318–327;
- 68cA. Koch, V. Mizrahi, Trends Microbiol. 2018, 26, 555–556.
- 69A. Govindaraj Vaithinathan, A. Vanitha, Perspect. Public Health 2018, 138, 87–88.
- 70T. Nishino, Nihon Rinsho. 2002, 60, 2216–2224.
- 71
- 71aJ. Chen, X. Shang, F. Hu, X. Lao, X. Gao, H. Zheng, W. Yao, Mini-Rev. Med. Chem. 2013, 13, 1846–1861;
- 71bI. Olsen, Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1303–1308.
- 72
- 72aR. P. Brown, R. T. Aplin, C. J. Schofield, Biochemistry 1996, 35, 12421–12432;
- 72bC. C. Chen, O. Herzberg, J. Mol. Biol. 1992, 224, 1103–1113;
- 72cY. Yang, K. Janota, K. Tabei, N. Huang, M. M. Siegel, Y. I. Lin, B. A. Rasmussen, D. M. Shlaes, J. Biol. Chem. 2000, 275, 26674–26682.
- 73M. A. Totir, J. Cha, A. Ishiwata, B. Wang, A. Sheri, V. E. Anderson, J. Buynak, S. Mobashery, P. R. Carey, Biochemistry 2008, 47, 4094–4101.
- 74J. D. Williams, Clin. Infect. Dis. 1997, 24, 494–497.
- 75A. Yamaguchi, T. Hirata, T. Sawai, Antimicrob. Agents Chemother. 1983, 24, 23–30.
- 76K. Bush, C. Macalintal, B. A. Rasmussen, V. J. Lee, Y. Yang, Antimicrob. Agents Chemother. 1993, 37, 851–858.
- 77F. Higashitani, A. Hyodo, N. Ishida, M. Inoue, S. Mitsuhashi, J. Antimicrob. Chemother. 1990, 25, 567–574.
- 78C. M. Witten, R. D. McFarland, S. L. Simek, Stem Cells Transl. Med. 2015, 4, 1495–1499.
- 79S. D. Lahiri, S. Mangani, T. Durand-Reville, M. Benvenuti, F. De Luca, G. Sanyal, J. D. Docquier, Antimicrob. Agents Chemother. 2013, 57, 2496–2505.
- 80D. M. Livermore, M. Warner, S. Mushtaq, J. Antimicrob. Chemother. 2013, 68, 2286–2290.
- 81
- 81aS. J. Hecker, K. R. Reddy, M. Totrov, G. C. Hirst, O. Lomovskaya, D. C. Griffith, P. King, R. Tsivkovski, D. Sun, M. Sabet, Z. Tarazi, M. C. Clifton, K. Atkins, A. Raymond, K. T. Potts, J. Abendroth, S. H. Boyer, J. S. Loutit, E. E. Morgan, S. Durso, M. N. Dudley, J. Med. Chem. 2015, 58, 3682–3692;
- 81bO. Lomovskaya, D. Sun, D. Rubio-Aparicio, K. Nelson, R. Tsivkovski, D. C. Griffith, M. N. Dudley, Antimicrob. Agents Chemother. 2017, 61, e01443-17.
- 82S. Santajit, N. Indrawattana, Biomed Res. Int. 2016, 2016, 2475067.
- 83A. M. King, S. A. Reid-Yu, W. Wang, D. T. King, G. D. Pascale, N. C. Strynadka, T. R. Walsh, B. K. Coombes, G. D. Wright, Nature 2014, 510, 503–506.
- 84F. Klingler, D. Moser, D. Büttner, T. A. Wichelhaus, F. Löhr, V. Dötsch, E. Proschak, Bioog. Med. Chem. Lett. 2015, 25, 5243–5246.
- 85T. Christopeit, A. Albert, H. S. Leiros, Bioog. Med. Chem. Lett. 2016, 24, 2947–2953.
- 86X. Liu, Y. Shi, J. S. Kang, P. Oelschlaeger, K. Yang, ACS Med. Chem. Lett. 2015, 6, 660–664.
- 87L. C. Ju, Z. Cheng, W. Fast, R. A. Bonomo, M. W. Crowder, Trends Pharmacol. Sci. 2018, 39, 635–647.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.