Transition-Metal-Free C(sp2)–C(sp2) Cross-Coupling of Diazo Quinones with Catechol Boronic Esters
Kai Wu
State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
Search for more papers by this authorDr. Liang-Liang Wu
State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorCorresponding Author
Dr. Cong-Ying Zhou
State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
Present address: College of Chemistry and Materials Science, Jinan University, Guangzhou, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chi-Ming Che
State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
Search for more papers by this authorKai Wu
State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
Search for more papers by this authorDr. Liang-Liang Wu
State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorCorresponding Author
Dr. Cong-Ying Zhou
State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
Present address: College of Chemistry and Materials Science, Jinan University, Guangzhou, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chi-Ming Che
State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
Search for more papers by this authorAbstract
A transition-metal-free C(sp2)−C(sp2) bond formation reaction by the cross-coupling of diazo quinones with catechol boronic esters was developed. With this protocol, a variety of biaryls and alkenyl phenols were obtained in good to high yields under mild conditions. The reaction tolerates various functionalities and is applicable to the derivatization of pharmaceuticals and natural products. The synthetic utility of the method was demonstrated by the short synthesis of multi-substituted triphenylenes and three bioactive natural products, honokiol, moracin M, and stemofuran A. Mechanistic studies and density functional theory (DFT) calculations revealed that the reaction involves attack of the boronic ester by a singlet quinone carbene followed by a 1,2-rearrangement through a stepwise mechanism.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202006542-sup-0001-misc_information.pdf13.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1“Quinone Diazides”:
- 1aA. G. Griesbeck, E. Zimmermann in Science of Synthesis (Ed.: ), Thieme, Stuttgart, 2006, p. 807;
- 1bW. Sander, G. Bucher, P. Komnick, J. Morawietz, P. Bubenitschek, P. G. Jones, A. Chrapkowski, Chem. Ber. 1993, 126, 2101.
- 2For selected examples of C−H functionalization, see:
- 2aS.-S. Zhang, C.-Y. Jiang, J.-Q. Wu, X.-G. Liu, Q. Li, Z.-S. Huang, D. Li, H. Wang, Chem. Commun. 2015, 51, 10240;
- 2bD. Das, P. Poddar, S. Maity, R. Samanta, J. Org. Chem. 2017, 82, 3612;
- 2cR. Chen, S. Cui, Org. Lett. 2017, 19, 4002;
- 2dZ. Liu, J.-Q. Wu, S.-D. Yang, Org. Lett. 2017, 19, 5434;
- 2eK. Wu, B. Cao, C.-Y. Zhou, C.-M. Che, Chem. Eur. J. 2018, 24, 4815;
- 2fY.-S. Jang, Ł. Woźniak, J. Pedroni, N. Cramer, Angew. Chem. Int. Ed. 2018, 57, 12901; Angew. Chem. 2018, 130, 13083;
- 2gB. Ghosh, R. Samanta, Chem. Commun. 2019, 55, 6886;
- 2hH.-X. Wang, Y. Richard, Q. Wan, C.-Y. Zhou, C.-M. Che, Angew. Chem. Int. Ed. 2020, 59, 1845; Angew. Chem. 2020, 132, 1861.
- 3For selected examples of alkene cyclopropanations, see:
- 3aR. J. Sundberg, E. W. Baxter, W. J. Pitts, R. Ahmed-Schofield, T. Nishiguchi, J. Org. Chem. 1988, 53, 5097;
- 3bR. J. Sundberg, W. J. Pitts, J. Org. Chem. 1991, 56, 3048;
- 3cD. L. Boger, T. J. Jenkins, J. Am. Chem. Soc. 1996, 118, 8860;
- 3dT. Sawada, D. E. Fuerst, J. L. Wood, Tetrahedron Lett. 2003, 44, 4919.
- 4H. T. Dao, P. S. Baran, Angew. Chem. Int. Ed. 2014, 53, 14382; Angew. Chem. 2014, 126, 14610.
- 5Other examples:
- 5aM. Kitamura, M. Kisanuki, K. Kanemura, T. Okauchi, Org. Lett. 2014, 16, 1554;
- 5bM. Kitamura, R. Sakata, T. Okauchi, Tetrahedron Lett. 2011, 52, 1931;
- 5cM. Kitamura, K. Otsuka, S. Takahashi, T. Okauchi, Tetrahedron Lett. 2017, 58, 3508;
- 5dH.-X. Wang, Q. Wan, K. Wu, K.-H. Low, C. Yang, C.-Y. Zhou, J.-S. Huang, C.-M. Che, J. Am. Chem. Soc. 2019, 141, 9027.
- 6 The Chemistry of Phenols (Ed.: ), Wiley, Chichester, 2003.
- 7C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062; Angew. Chem. 2012, 124, 5150.
- 8C.-L. Sun, Z.-J. Shi, Chem. Rev. 2014, 114, 9219.
- 9Reviews:
- 9aH. Li, Y. Zhang, J. Wang, Synthesis 2013, 45, 3090;
- 9bS. Roscales, A. G. Csákÿ, Chem. Soc. Rev. 2014, 43, 8215;
- 9cM. Paraja, M. Plaza, C. Valdés, Synlett 2017, 28, 2373.
- 10Seminal report: J. Hooz, S. Linke, J. Am. Chem. Soc. 1968, 90, 5936.
- 11For selected recent examples, see:
- 11aC. Peng, W. Zhang, G. Yan, J. Wang, Org. Lett. 2009, 11, 1667;
- 11bJ. Barluenga, M. Tomás-Gamasa, F. Aznar, C. Valdés, Nat. Chem. 2009, 1, 494;
- 11cM. C. Pérez-Aguilar, C. Valdés, Angew. Chem. Int. Ed. 2012, 51, 5953; Angew. Chem. 2012, 124, 6055;
- 11dH. Li, L. Wang, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2012, 51, 2943; Angew. Chem. 2012, 124, 2997;
- 11eO. A. Argintaru, D. Ryu, I. Aron, G. A. Molander, Angew. Chem. Int. Ed. 2013, 52, 13656; Angew. Chem. 2013, 125, 13901;
- 11fG. A. Molander, D. Ryu, Angew. Chem. Int. Ed. 2014, 53, 14181; Angew. Chem. 2014, 126, 14405;
- 11gG. Wu, Y. Deng, C. Wu, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2014, 53, 10510; Angew. Chem. 2014, 126, 10678;
- 11hJ.-S. Poh, S.-H. Lau, I. G. Dykes, D. N. Tran, C. Battilocchio, S. V. Ley, Chem. Sci. 2016, 7, 6803;
- 11iM. Plaza, C. Valdés, J. Am. Chem. Soc. 2016, 138, 12061;
- 11jC. Battilocchio, F. Feist, A. Hafner, M. Simon, D. N. Tran, D. M. Allwood, D. C. Blakemore, S. V. Ley, Nat. Chem. 2016, 8, 360;
- 11kC. Bomio, M. A. Kabeshov, A. R. Lit, S.-H. Lau, J. Ehlert, C. Battilocchio, S. V. Ley, Chem. Sci. 2017, 8, 6071;
- 11lM. Lübcke, D. Bezhan, K. J. Szabó, Chem. Sci. 2019, 10, 5990;
- 11mM. Santi, D. M. C. Ould, J. Wenz, Y. Soltani, R. L. Melen, T. Wirth, Angew. Chem. Int. Ed. 2019, 58, 7861; Angew. Chem. 2019, 131, 7943;
- 11nY. Ma, B. R. P. Reddy, X. Bi, Org. Lett. 2019, 21, 9860.
- 12
- 12aQ. Zhang, X.-F. Zhang, M. Li, C. Li, J.-Q. Liu, Y.-Y. Jiang, X. Ji, L. Liu, Y.-C. Wu, J. Org. Chem. 2019, 84, 14508;
- 12bZ. Yu, Y. Li, J. Shi, B. Ma, L. Liu, J. Zhang, Angew. Chem. Int. Ed. 2016, 55, 14807; Angew. Chem. 2016, 128, 15027.
- 13J. Magano, J. R. Dunetz, Chem. Rev. 2011, 111, 2177.
- 14Y.-B. Wang, B. Tan, Acc. Chem. Res. 2018, 51, 534.
- 15For selected thermolysis-induced diazo quinone generating free carbene, see:
- 15aG. A. Kraus, J. O. Nagy, J. Delano, Tetrahedron 1985, 41, 2337;
- 15bK. B. Somai Magar, Y. R. Lee, Org. Lett. 2013, 15, 4288;
- 15cV. A. Vasin, M. V. Fadin, I. V. Tarasova, Russ. J. Org. Chem. 2017, 53, 1815.
- 16J.-P. Goddard, T. Le Gall, C. Mioskowski, Org. Lett. 2000, 2, 1455.
- 17M. Regitz, G. Maas, Diazo Compounds: Properties and Synthesis, Academic Press, Orlando, 1986, p. 3–64.
10.1016/B978-0-12-585840-3.50005-2 Google Scholar
- 18
- 18aF. Weygand, W. Schwenke, H. J. Bestmann, Angew. Chem. 1958, 70, 506;
- 18bN. Baumann, Helv. Chim. Acta 1972, 55, 2716;
- 18cH. Meier, K.-P. Zeller, Angew. Chem. Int. Ed. Engl. 1975, 14, 32; Angew. Chem. 1975, 87, 52.
- 19M. D. Watson, A. Fechtenkötter, K. Müllen, Chem. Rev. 2001, 101, 1267.
- 20Z.-L. Kong, S.-C. Tzeng, Y.-C. Liu, Bioorg. Med. Chem. Lett. 2005, 15, 163.
- 21H. K. Shamsuzzaman, Eur. J. Med. Chem. 2015, 97, 483.
- 22
- 22aR. Zhou, W. Wang, Z.-J. Jiang, K. Wang, X.-L. Zheng, H.-Y. Fu, H. Chen, R.-X. Li, Chem. Commun. 2014, 50, 6023;
- 22bC. G. Bates, P. Saejueng, J. M. Murphy, D. Venkataraman, Org. Lett. 2002, 4, 4727.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.