Water-Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase
Dr. Jerome M. Fox
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138 USA
Search for more papers by this authorDr. Kyungtae Kang
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138 USA
Search for more papers by this authorDr. Madhavi Sastry
Schrödinger, Sanali Infopark, 8-2-120/113 Banjara Hills, Hyderabad, 11937, Andhra Pradesh India
Search for more papers by this authorDr. Woody Sherman
Schrödinger, Inc., 120 West 45thStreet, New York, NY, 10036 USA
Search for more papers by this authorDr. Banumathi Sankaran
Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorPeter H. Zwart
Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. George M. Whitesides
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138 USA
Search for more papers by this authorDr. Jerome M. Fox
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138 USA
Search for more papers by this authorDr. Kyungtae Kang
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138 USA
Search for more papers by this authorDr. Madhavi Sastry
Schrödinger, Sanali Infopark, 8-2-120/113 Banjara Hills, Hyderabad, 11937, Andhra Pradesh India
Search for more papers by this authorDr. Woody Sherman
Schrödinger, Inc., 120 West 45thStreet, New York, NY, 10036 USA
Search for more papers by this authorDr. Banumathi Sankaran
Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorPeter H. Zwart
Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. George M. Whitesides
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138 USA
Search for more papers by this authorAbstract
This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water-mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy-driven or entropy-driven. Our findings highlight a possible asymmetry in protein–ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201609409-sup-0001-misc_information.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. W. Snyder, M. R. Lockett, D. T. Moustakas, G. M. Whitesides, Eur. Phys. J. Spec. Top. 2013, 223, 853–891.
- 2K. A. Dill, T. M. Truskett, V. Vlachy, B. Hribar-Lee, Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 173–199.
- 3D. Chandler, Nature 2005, 437, 640–647.
- 4C. Barillari, J. Taylor, R. Viner, J. W. Essex, J. Am. Chem. Soc. 2007, 129, 2577–2587.
- 5D. J. Huggins, W. Sherman, B. Tidor, J. Med. Chem. 2012, 55, 1424–1444.
- 6G. Klebe, Nat. Rev. Drug Discovery 2015, 14, 95–110.
- 7A. Biela, F. Sielaff, F. Terwesten, A. Heine, T. Steinmetzer, G. Klebe, J. Med. Chem. 2012, 55, 6094–6110.
- 8R. J. Bingham, J. B. C. Findlay, S.-Y. Hsieh, A. P. Kalverda, A. Kjellberg, C. Perazzolo, S. E. V. Phillips, K. Seshadri, C. H. Trinh, W. B. Turnbull, et al., J. Am. Chem. Soc. 2004, 126, 1675–1681.
- 9B. Breiten, M. R. Lockett, W. Sherman, S. Fujita, M. Al-Sayah, H. Lange, C. M. Bowers, A. Heroux, G. Krilov, G. M. Whitesides, J. Am. Chem. Soc. 2013, 135, 15579–15584.
- 10J. Ladbury, G. Klebe, E. Freire, Nat. Rev. Drug Discovery 2010, 9, 23–27.
- 11L. Englert, A. Biela, M. Zayed, A. Heine, D. Hangauer, G. Klebe, Biochim. Biophys. Acta Gen. Subj. 2010, 1800, 1192–1202.
- 12A. Biela, N. N. Nasief, M. Betz, A. Heine, D. Hangauer, G. Klebe, Angew. Chem. Int. Ed. 2013, 52, 1822–1828; Angew. Chem. 2013, 125, 1868–1876.
- 13S. Matsuoka, S. Sugiyama, D. Matsuoka, M. Hirose, S. Lethu, H. Ano, T. Hara, O. Ichihara, S. R. Kimura, S. Murakami, et al., Angew. Chem. Int. Ed. 2015, 54, 1508–1511; Angew. Chem. 2015, 127, 1528–1531.
- 14M. Prabu-Jeyabalan, E. Nalivaika, C. A. Schiffer, Structure 2002, 10, 369–381.
- 15S. G. Krimmer, M. Betz, A. Heine, G. Klebe, ChemMedChem 2014, 9, 833–846.
- 16V. M. Krishnamurthy, G. K. Kaufman, A. R. Urbach, I. Gitlin, K. L. Gudiksen, D. B. Weibel, G. M. Whitesides, Chem. Rev. 2008, 108, 946–1051.
- 17P. W. Snyder, J. Mecinovic, D. T. Moustakas, S. W. Thomas, M. Harder, E. T. Mack, M. R. Lockett, A. Heroux, W. Sherman, G. M. Whitesides, Proc. Natl. Acad. Sci. USA 2011, 108, 17889–17894.
- 18E. B. Starikov, B. Nordén, J. Phys. Chem. B 2007, 111, 14431–14435.
- 19J. D. Dunitz, Chem. Biol. 1995, 2, 709–712.
- 20H. Yu, S. W. Rick, J. Phys. Chem. B 2010, 114, 11552–11560.
- 21B. Lee, G. Graziano, J. Am. Chem. Soc. 1996, 118, 5163–5168.
- 22T. Young, R. Abel, B. Kim, B. J. Berne, R. A. Friesner, Proc. Natl. Acad. Sci. USA 2007, 104, 808–813.
- 23R. Abel, T. Young, R. Farid, B. J. Berne, R. A. Friesner, J. Am. Chem. Soc. 2008, 130, 2817–2831.
- 24T. Beuming, R. Farid, W. Sherman, Protein Sci. 2009, 18, 1609–1619.
- 25T. Lazaridis, J. Phys. Chem. B 1998, 102, 3531–3541.
- 26T. Lazaridis, J. Phys. Chem. B 1998, 102, 3542–3550.
- 27S.-R. Tzeng, C. G. Kalodimos, Nature 2012, 488, 236–240.
- 28J. M. Aramini, S. M. Vorobiev, L. M. Tuberty, H. Janjua, E. T. Campbell, J. Seetharaman, M. Su, Y. J. Huang, T. B. Acton, R. Xiao, et al., Structure 2015, 23, 1382–1393.
- 29P. Setny, R. Baron, J. A. McCammon, J. Chem. Theory Comput. 2010, 6, 2866–2871.
- 30L. Wang, B. J. Berne, R. A. Friesner, Proc. Natl. Acad. Sci. USA 2011, 108, 1326–1330.
- 31E. Barratt, R. J. Bingham, D. J. Warner, C. A. Laughton, S. E. V. Phillips, S. W. Homans, J. Am. Chem. Soc. 2005, 127, 11827–11834.
- 32S. W. Homans, Drug Discovery Today 2007, 12, 534–539.
- 33E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 1210—1250; Angew. Chem. 2003, 115, 1244–1288.
- 34R. Gaspari, C. Rechlin, A. Heine, G. Bottegoni, W. Rocchia, D. Schwarz, J. Bomke, H.-D. Gerber, G. Klebe, A. Cavalli, J. Med. Chem. 2015, 59, 4245–4256.
- 35D. Ben-amotz, Annu. Rev. Phys. Chem. 2016, 67, 617–638.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.