Coherent Control of the Dynamics of Quantum Fisher Information and Geometric Phase in a 1D Photonic Crystal Waveguide
Negar Nikdel Yousefi
Department of Physics, University of Guilan, Rasht, 41335–1914 Iran
Search for more papers by this authorCorresponding Author
Ali Mortezapour
Department of Physics, University of Guilan, Rasht, 41335–1914 Iran
E-mail: [email protected]
Search for more papers by this authorNegar Nikdel Yousefi
Department of Physics, University of Guilan, Rasht, 41335–1914 Iran
Search for more papers by this authorCorresponding Author
Ali Mortezapour
Department of Physics, University of Guilan, Rasht, 41335–1914 Iran
E-mail: [email protected]
Search for more papers by this authorAbstract
It is aimed to study a hybrid quantum-classical system in which a qubit as a quantum system coupled to a semi-infinite 1D photonic crystal (PC) waveguide, and is controlled by a classical driving field. PC waveguides with engineering capability serve as engineered reservoirs where various manifestations of quantum mechanics can be studied. Here, the main purpose of the study is to evaluate the effect of coherent control on the dynamics of quantum Fisher information (QFI) and geometric phase (GP). It is revealed that the intensity (the Rabi frequency) of the classical field, memory time, and geometric length of the waveguide are key variables whose judicious choice aids in optimizing the estimation of the quantum parameters that are initially encoded in the qubit state. It is observed that the optical length of the waveguide and the Rabi frequency of the classical field have an interplay effect on the dynamic of the QFI and geometric phase. As an interesting finding, it is disclosed that as the Rabi frequency increases, the effect of the optical length of the waveguide fades away, and the Rabi frequency solely controls the geometric phase. Moreover, it is demonstrated that the estimation accuracy increases as the memory time decreases. On the other hand, lengthening the memory time lessens the dependency of the geometric phase on the length of the waveguide.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, S. Lloyd, Nat. Photonics 2018, 12, 724.
- 2C. W. Helstrom, J. Stat. Phys. 1969, 1, 231.
10.1007/BF01007479 Google Scholar
- 3K. Berrada, J. Opt. Soc. Am. B 2015, 32, 571.
- 4M. Ban, Quant. Inf. Proc. 2015, 14, 4163.
- 5C. W. Helstrom, J. Stat. Phys. 1982, 1, 231.
10.1007/BF01007479 Google Scholar
- 6A. Holevo, Edizioni della Normale, Springer, Basel 2011, p. 1.
- 7M. W. Mitchell, J. S. Lundeen, A. M. Steinberg, Nature 2004, 429, 161.
- 8H. S. Eisenberg, J. F. Hodelin, G. Khoury, D. Bouwmeester, Phys. Rev. Lett. 2005, 94, 090502.
- 9T. Nagata, R. Okamoto, J. L. Óbrien, K. Sasaki, S. Takeuchi, Science 2007, 316, 726.
- 10K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, N. Mavalvala, Nat. Phys. 2008, 4, 472.
- 11P. A. Knott, W. J. Munro, J. A. Dunningham, Phys. Rev. A 2014, 89, 053812.
10.1103/PhysRevA.89.053812 Google Scholar
- 12F. G. S. L. Brandão, M. Horodecki, J. Oppenheim, J. M. Renes, R. W. Spekkens, Phys. Rev. Lett. 2013, 111, 250404.
- 13G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens, N. Y. Halpern, Phys. Rep. 2015, 583, 1.
- 14T. L. Wang, L. N. Wu, W. Yang, G. R. Jin, N. Lambert, F. Nori, New J. Phys. 2014, 16, 063039.
- 15Y.-K. Ren, L.-M. Tang, H.-S. Zeng, Quant. Inf. Proc. 2016, 15, 5011.
- 16R. Demkowicz-Dobrza´nski, J. Kołody´nski, M. Gu¸t˘a, Nat. Commun. 2012, 3, 1063.
- 17R. Chaves, J. B. Brask, M. Markiewicz, J. Kołody´nski, A. Acín, Phys. Rev. Lett. 2013, 111, 120401.
- 18A. W. Chin, S. F. Huelga, M. B. Plenio, Phys. Rev. Lett. 2012, 109, 233601.
- 19K. Berrada, Phys. Rev. A 2013, 88, 035806.
- 20X.-M. Lu, S. Yu, C. H. Oh, Nat. Commun. 2015, 6, 7282.
- 21Y.-L. Li, X. Xiao, Y. Yao, Phys. Rev. A 2015, 91, 052105.
- 22M. M. Wolf, J. Eisert, T. S. Cubitt, J. I. Cirac, Phys. Rev. Lett. 2008, 101, 150402.
- 23F. Nosrati, A. Mortezapour, R. L. Franco, Phys. Rev. A 2020, 101, 012331.
- 24S. Pancharatnam, Proc. Indian Acad. Sci., Sect. A 1956, 44, 247.
10.1007/BF03046050 Google Scholar
- 25M. Born, V. A. Fock, Z. Phys. A 1928, 51, 165.
- 26J. E. Avron, A. Elgart, Commun. Math. Phys 1999, 203, 445.
- 27J. Larson, E. Sjöqvist, P. Öhberg, Conical Intersect. Phys. 2020, 965, 5.
10.1007/978-3-030-34882-3_2 Google Scholar
- 28Y. Aharonov, J. Anandan, Phys. Rev. Lett. 1987, 58, 1593.
- 29E. Sjöqvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson, D. K. Oi, V. Vedral, Phys. Rev. Lett 2000, 85, 2845.
- 30M. V. Berry, Proc. R. Soc. Lond., Ser. A 1984, 392, 45.
- 31A. Carollo, I. Fuentes-Guridi, M. F. Santos, V. Vedral, Phys. Rev. Lett. 2003, 90, 160402.
- 32A. Carollo, I. Fuentes-Guridi, M. F. Santos, V. Vedral, Phys. Rev. Lett. 2004, 92, 020402.
- 33F. C. Lombardo, P. I. Villar, Phys. Rev. A. 2006, 74, 042311.
- 34X. X. Yi, D. M. Tong, L. C. Wang, L. C. Kwek, C. H. Oh, Phys. Rev. A 2006, 73, 052103.
10.1103/PhysRevA.73.052103 Google Scholar
- 35P. I. Villar, Phys. Rev. A 2009, 373, 206.
- 36F. M. Cucchietti, J. F. Zhang, F. C. Lombardo, P. I. Villar, R. Laflamme, Phys. Rev. Lett. 2010, 105, 240406.
- 37F. C. Lombardo, P. I. Villar, Phys. Rev. A 2010, 81, 022115.
10.1103/PhysRevA.81.022115 Google Scholar
- 38J. J. Chen, J. H. An, Q. J. Tong, H. G. Luo, C. H. Oh, Phys. Rev. A 2010, 81, 022120.
10.1103/PhysRevA.81.022120 Google Scholar
- 39J. Hu, H. Yu, Phys. Rev. A 2012, 85, 032105.
10.1103/PhysRevA.85.032105 Google Scholar
- 40F. C. Lombardo, P. I. Villar, Phys. Rev. A 2013, 87, 032338.
- 41F. C. Lombardo, P. I. Villar, Phys. Rev. A 2015, 91, 042111.
10.1103/PhysRevA.91.042111 Google Scholar
- 42K. Berrada, C. R. Ooi, S. Abdel-Khalek, J. Appl. Phys. 2015, 117, 124904.
10.1063/1.4916333 Google Scholar
- 43B. Liu, F. Y. Zhang, J. Song, H. S. Song, Sci. Rep. 2015, 5, 11726.
- 44K. Berrada, Solid State Commun. 2018, 273, 34.
- 45H. Gholipour, A. Mortezapour, F. Nosrati, R. L. Franco, Ann. Phys 2020, 414, 168073.
- 46K. Berrada, S. Abdel-Khalek, C. H. Raymond Ooi, Quantum Inf. Process 2013, 12, 2177.
- 47S. Abdel-Khalek, Y. S. El-Saman, I. Mechai, M. Abdel-Aty, Braz. J. Phys. 2018, 48, 9.
- 48Y. Feng, S. Lin, S. Huang, S. Shrestha, G. Conibeer, J. Appl. Phys. 2015, 117, 12.
- 49P. Zanardi, M. Rasetti, Phys. Lett. A 1999, 264, 94.
- 50J. A. Jones, V. Vedral, A. Ekert, G. Castagnoli, Nature 2000, 403, 869.
- 51G. Falci, R. Fazio, G. Massimo Palma, J. Siewert, V. Vedral, Nature 2000, 407, 355.
- 52L.-M. Duan, J. I. Cirac, P. Zoller, Science 2001, 292, 1695.
- 53W. X-Bin, M. Keiji, Phys. Rev. Lett. 2001, 87, 097901.
- 54D. Liebfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, D. J. Wineland, Nature 2000, 422, 412.
10.1038/nature01492 Google Scholar
- 55A. Faraon, E. Waks, D. Englund, I. Fushman, J. Vučković, Appl. Phys. Lett. 2007, 90, 073102.
- 56B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, H. J. Kimble, Science 2008, 319, 1062.
- 57M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, M. D. Lukin, Phys. Rev. Lett. 2009, 102, 203902.
- 58M. D. Lukin, Phys. Rev. Lett. 2009, 102, 203902.
- 59O. Astafiev, A. M. Zagoskin, A. J. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, J. S. Tsai, Science 2010, 327, 840.
- 60S. Abdel-Khalek, Ann. Phys. 2014, 351, 952.
- 61S. Abdel-Khalek, Opt. Quantum Electron. 2014, 46, 1055.
- 62J. T. Shen, S. H. Fan, Opt. Lett. 2001, 30, 2005.
- 63J. Bleuseel, Phys. Rev. Lett. 2011, 106, 103601.
- 64A. Huck, S. Kumar, A. Shakoor, U. L. Andersen, Phys. Rev. Lett. 2011, 106, 096801.
- 65T. Tufarelli, F. Ciccarello, M. S. Kim, Phys. Rev. A 2013, 87, 013820.
- 66P. Horak, P. Domokos, H. Ritsch, Europhys. Lett. 2003, 61, 459.
- 67J. T. Shen, S. Fan, Phys. Rev. Lett. 2005, 95, 213001.
- 68L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, F. Nori, Phys. Rev. Lett. 2008, 101, 100501.
- 69V. Paulisch, H. J. Kimble, A. G. Tudela, New. J. Phys. 2016, 18, 043041.
- 70I. M. Mirza, J. C. Schotland, Phys. Rev. A 2016, 94, 012309.
10.1103/PhysRevA.94.012309 Google Scholar
- 71E. Martín-Martínez, E. G. Brown, W. Donnelly, A. Kempf, Phys. Rev. A 2013, 88, 052310.
10.1103/PhysRevA.88.052310 Google Scholar
- 72C. Gonzalez-Ballestero, E. Moreno, F. J. Garcia-Vidal, Phys. Rev. A 2014, 89, 042328.
- 73I. M. Mirza, J. G. Hoskins, J. C. Schotland, Phys. Rev. A 2017, 96, 053804.
10.1103/PhysRevA.96.053804 Google Scholar
- 74D. E. Chang, A. S. Sørensen, E. A. Demler, M. D. Lukin, Nat. Phys. 2007, 3, 807.
- 75J. Wang, F. Sciarrino, A. Laing, M. G. Thompson, Nat. Photonics 2020, 14, 273.
- 76T. F. Krauss, J. Appl. Phys. D 2007, 40, 2666.
- 77J. P. Hugonin, P. Lalanne, T. P. White, T. F. Krauss, Opt. Lett. 2007, 32, 2638.
- 78X. Xiao, M. F. Fang, Y. L. Li, J. Phys. B: At. Mol. Opt. Phys. 2010, 43, 185505.
10.1088/0953-4075/43/18/185505 Google Scholar
- 79A. Mortezapour, M. Abedi, M. Mahmoudi, M. R. H. Khajehpour, J. Phys. B: At. Mol. Opt. Phys. 2011, 44, 085501.
10.1088/0953-4075/44/8/085501 Google Scholar
- 80Y. J. Zhang, W. Han, Y. J. Xia, J. P. Cao, H. Fan, Phys. Rev. A 2015, 91, 032112.
- 81Y. K. Ren, L. M. Tang, H. S. Zeng, Quantum Inf. Process. 2016, 15, 5011.
- 82Z. Huang, H. Situ, Quantum Inf. Process. 2017, 16, 222.
10.1007/s11128-017-1673-0 Google Scholar
- 83A. Mortezapour, A. Nourmandipour, H. Gholipour, Quantum Inf. Process. 2020, 19, 136.
- 84A. Nourmandipour, A. Vafafard, A. Mortezapour, R. Franzosi, Sci. Rep. 2021, 11, 16259.
- 85N. N. Yousefi, A. Mortezapour, G. Naeimi, F. Nosrati, A. Pariz, R. L. Franco, Phys. Rev. A 2022, 105, 042212.
10.1103/PhysRevA.105.042212 Google Scholar
- 86S. John, J. Wang, Phys. Rev. Lett. 1990, 64, 2418.
- 87S. John, J. Wang, Phys. Rev. B 1991, 43, 12772.
- 88T. Tufarelli, M. S. Kim, F. Ciccarello, Phys. Rev. A 2014, 90, 012113.
- 89E. Solano, G. S. Agarwal, H. Walther, Phys. Rev. Lett. 2003, 90, 027903.
- 90J. Liu, H. Yuan, X. M. Lu, X. Wang, J. Phys. A 2020, 53, 023001.
10.1088/1751-8121/ab5d4d Google Scholar
- 91Y. X. Liu, C. P. Sun, F. Nori, Phys. Rev. A 2006, 74, 052321.
10.1103/PhysRevA.74.052321 Google Scholar
- 92J. Wang, Y. Wu, N. Guo, Z.-Y. Xing, Y. Qin, P. Wang, Opt. Commun. 2018, 420, 183.
- 93M. G. Paris, Int. J. Quantum Inf. INT 2009, 7, 125.
- 94W. Zhong, Z. Sun, J. Ma, X. Wang, F. Nori, Phys. Rev. A 2013, 87, 022337.
- 95J. Liu, X. Jing, W. Zhong, X. Wang, Commun. Theor. Phys. 2014, 61, 45.
- 96D. M. Tong, E. Sjöqvist, L. C. Kwek, C. H. Oh, Phys. Rev. Lett. 2004, 93, 080405.
- 97T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, D. G. Deppe, Nature 2004, 432, 200.
- 98M. Fujita, T. Ueno, T. Asano, S. Noda, H. Ohhata, T. Tsuji, N. Shimoji, Electron. Lett. 2003, 39, 1750.
- 99G. G. See, L. Xu, E. Sutanto, A. G. Alleyne, R. G. Nuzzo, B. T. Cunningham, Appl. Phys. Lett. 2015, 107, 051101.