Manipulating Second Harmonic Generation in Higher-Order Topological Photonic Crystals
Jun Ma
School of Computer and Information, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorKai Guo
School of Computer and Information, Hefei University of Technology, Hefei, 230009 China
School of Physics, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorFujia Chen
School of Computer and Information, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorKeya Zhou
School of Physics, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorShutian Liu
School of Physics, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Zhongyi Guo
School of Computer and Information, Hefei University of Technology, Hefei, 230009 China
E-mail: [email protected]
Search for more papers by this authorJun Ma
School of Computer and Information, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorKai Guo
School of Computer and Information, Hefei University of Technology, Hefei, 230009 China
School of Physics, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorFujia Chen
School of Computer and Information, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorKeya Zhou
School of Physics, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorShutian Liu
School of Physics, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Zhongyi Guo
School of Computer and Information, Hefei University of Technology, Hefei, 230009 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Higher-order topological photonic crystals (TPCs) have attracted much attention in the past several years since they do not obey the conventional bulk-boundary correspondence in topological insulating phases. This characteristic offers a new dimension with which to trap and manipulate the flow of light. In this work, 2D higher-order TPCs for engineering optical second harmonic generation (SHG) are designed. In the TPCs, a topological corner-state is achieved and it is demonstrated that the high localization of photons at the corner-state can significantly promote optical SHG. In addition, topological edge-states are obtained by breaking the Dirac degeneracy point near the SHG frequency. They are also topologically protected and immune to bending resistance. Therefore, the enhanced SHG signal from the corner-state can be manipulated precisely for transmitting through the designed interface with relatively low loss due to the topological-protection edge waves. This design strategy combines the advantages of corner-state and edge-state in higher-order TPCs, demonstrating potential applications of topological photonic devices, such as optical communication and optical computing technologies.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1Z. K. Shao, H. Z. Chen, S. Wang, X. R. Mao, Z. Q. Yang, S. L. Wang, X. X. Wang, X. Hu, R. M. Ma, Nat. Nanotechnol. 2020, 15, 67.
- 2S. Raghu, F. D. M. Haldane, Phys. Rev. A 2008, 78, 033834.
- 3L. Lu, J. D. Joannopoulos, M. Soljačić, Nat. Photonics 2014, 8, 821.
- 4T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto, Rev. Mod. Phys. 2019, 91, 015006.
- 5F. D. M. Haldane, S. Raghu, Phys. Rev. Lett. 2008, 100, 013904.
- 6Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić, Phys. Rev. Lett. 2008, 100, 013905.
- 7Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić, Nature 2009, 461, 772.
- 8A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, G. Shvets, Nat. Mater. 2013, 12, 233.
- 9Y. Yang, Y. F. Xu, T. Xu, H. X. Wang, J. H. Jiang, X. Hu, Z. H. Hang, Phys. Rev. Lett. 2018, 120, 217401.
- 10L. Lu, L. Fu, J. D. Joannopoulos, M. Soljačić, Nat. Photonics 2013, 7, 294.
- 11M. Xiao, Z. Q. Zhang, C. T. Chan, Phys. Rev. X 2014, 4, 021017.
- 12W. J. Chen, M. Xiao, C. T. Chan, Nat. Commun. 2016, 7, 13038.
- 13J. W. Dong, X. D. Chen, H. Zhu, Y. Wang, X. Zhang, Nat. Mater. 2017, 16, 298.
- 14Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Nature 2020, 578, 246.
- 15X. T. He, E. T. Liang, J. J. Yuan, H. Y. Qiu, X. D. Chen, F. L. Zhao, J. W. Dong, Nat. Commun. 2019, 10, 872.
- 16L. He, W. X. Zhang, X. D. Zhang, Opt. Express 2019, 27, 25841.
- 17M. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor, Nat. Phys. 2011, 7, 907.
- 18M. Hafezi, S. Mittal, J. Fan, A. Migdall, J. M. Taylor, Nat. Photonics 2013, 7, 1001.
- 19G. Q. Liang, Y. D. Chong, Phys. Rev. Lett. 2013, 110, 203904.
- 20T. Zouache, A. Hocini, Prog. Electromagn. Res. Lett. 2020, 91, 77.
- 21M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Nature 2013, 496, 196.
- 22M. Xiao, Q. Lin, S. Fan, Phys. Rev. Lett. 2016, 117, 057401.
- 23J. Noh, S. Huang, D. Leykam, Y. D. Chong, K. P. Chen, M. C. Rechtsman, Nat. Phys. 2017, 13, 611.
- 24F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, B. Zhang, Nat. Commun. 2016, 7, 11619.
- 25X. Wu, Y. Meng, J. Tian, Y. Huang, H. Xiang, D. Han, W. Wen, Nat. Commun. 2017, 8, 1304.
- 26D. J. Bisharat, D. F. Sievenpiper, Laser Photonics Rev. 2019, 13, 1900126.
- 27A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk'yanchuk, Science 2016, 354, aag2472.
- 28Y. Lumer, Y. Plotnik, M. C. Rechtsman, M. Segev, Phys. Rev. Lett. 2013, 111, 243905.
- 29K. Fang, Z. Yu, S. Fan, Nat. Photonics 2012, 6, 782.
- 30N. Malkova, I. Hromada, X. Wang, G. Bryant, Z. Chen, Phys. Rev. A 2009, 80, 043806.
- 31Y. Wang, L. J. Lang, C. H. Lee, B. Zhang, Y. D. Chong, Nat. Commun. 2019, 10, 1102.
- 32O. Manela, M. Segev, D. N. Christodoulides, D. Kip, New J. Phys. 2010, 12, 053017.
- 33S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, S. Wen, Opt. Mater. Express 2014, 4, 587.
- 34D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, Y. S. Kivshar, Phys. Rev. Lett. 2018, 121, 163901.
- 35S. Xia, D. Jukić, N. Wang, D. Smirnova, L. Smirnov, L. Tang, D. Song, A. Szameit, D. Leykam, J. Xu, Z. Chen, H. Buljan, Light Sci. Appl. 2020, 9, 147.
- 36L. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov, M. Ehrhardt, F. Martinez, Y. V. Kartashov, V. V. Konotop, L. Torner, D. Bauer, A. Szameit, Science 2020, 370, 701.
- 37S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. L. Davies, Y. S. Kivshar, Nat. Nanotechnol. 2019, 14, 126.
- 38D. Smirnova, S. Kruk, D. Leykam, E. M. Gaykazyan, D. Y. Choi, Y. Kivshar, Phys. Rev. Lett. 2019, 123, 103901.
- 39B. Xie, G. Su, H. F. Wang, F. Liu, L. Hu, S. Y. Yu, P. Zhan, M. H. Lu, Z. Wang, Y. F. Chen, Nat. Commun. 2020, 11, 3768.
- 40L. Zhang, Y. Yang, Z. K. Lin, P. Qin, Q. Chen, F. Gao, E. Li, J. H. Jiang, B. Zhang, H. Chen, Adv. Sci. 2020, 7, 1902724.
- 41Z. N. Farzad, R. Fleury, Phys. Rev. Lett. 2019, 123, 053902.
- 42S. S. Kruk, W. Gao, D. K. Choi, T. Zentgraf, S. Zhang, Y. Kivshar, Nano Lett. 2021, 21, 4592.
- 43Z. Lan, J. W. You, Q. Ren, W. E. I. Sha, N. C. Panoiu, Phys. Rev. A 2021, 103, L041502.
- 44L. H. Wu, X. Hu, Phys. Rev. Lett. 2015, 114, 223901.
- 45W. A. Benalcazar, T. Li, T. L. Hughes, Phys. Rev. B 2019, 99, 245151.
- 46J. C. Y. Teo, T. L. Hughes, Phys. Rev. Lett. 2013, 111, 047006.
- 47C. Chen, Z. Song, J. Z. Zhao, Z. Chen, Z. M. Yu, X. L. Sheng, S. A. Yang, Phys. Rev. Lett. 2020, 125, 056402.
- 48Z. Lan, J. W. You, N. C. Panoiu, Phys. Rev. B 2020, 101, 155422.
- 49K. Wang, H. Qian, Z. Liu, P. K. L. Yu, Prog. Electromagn. Res. 2020, 168, 25.