Manipulation of One-Way Gaussian Steering via Quantum Correlated Microwave Fields
Zhi-Bo Yang
Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002 China
Search for more papers by this authorCorresponding Author
Hong-Yu Liu
Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Rong-Can Yang
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, and College of Physics and Energy, Fujian Normal University, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhi-Bo Yang
Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002 China
Search for more papers by this authorCorresponding Author
Hong-Yu Liu
Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Rong-Can Yang
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, and College of Physics and Energy, Fujian Normal University, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Manipulation of one-way Gaussian steering in macroscopic systems is outstandingly challenging in modern physics. In this paper, a cavity magnomechanical system is used which is composed of two spatially separate microwave cavities and two massive yttrium iron garnet (YIG) spheres in order for one-way Gaussian steering. The two cavities are pumped by a two-mode squeezed light, while both two YIG spheres are individually driven by a classical field at a red sideband with respect to the magnon mode. By creating different excitations for the two phonon modes, the systemic symmetry is broken and one-way Gaussian steering with strong entanglement between two phonon modes induced by the deformation of YIG spheres is achieved. This finding may provide a novel method to manipulate asymmetric quantum steering between two long-distance macroscopic objects which is of great importance for quantum information processing.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data not shared.
References
- 1a) A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 1935, 47, 777;
b) J. S. Bell, Physics 1964, 1, 195.
10.1103/PhysicsPhysiqueFizika.1.195 Google Scholar
- 2E. Schrödinger, Naturwissenschaften 1935, 23, 844.
10.1007/BF01491987 Google Scholar
- 3a) L. Masanes, Phys. Rev. Lett. 2006, 96, 150501; b) M. Piani, J. Watrous, Phys. Rev. Lett. 2009, 102, 250501.
- 4a) M. D. Reid, Phys. Rev. A 1989, 40, 913; b) H. M. Wiseman, S. J. Jones, A. C. Doherty, Phys. Rev. Lett. 2007, 98, 140402; c) S. J. Jones, H. M. Wiseman, A. C. Doherty, Phys. Rev. A 2007, 76, 052116.
- 5E. G. Cavalcanti, C. J. Broadbent, S. P. Walborn, H. M. Wiseman, J. Opt. Soc. Am. B 2015, 32, EPR1.
- 6I. Kogias, A. R. Lee, S. Ragy, G. Adesso, Phys. Rev. Lett. 2015, 114, 060403.
- 7Q. Y. He, L. Rosales-Zárate, G. Adesso, M. D. Reid, Phys. Rev. Lett. 2015, 115, 180502.
- 8M. Asjad, P. Tombesi, D. Vitali, Phys. Rev. A 2016, 94, 052312.
- 9a) H. Ollivier, W. H. Zurek, Phys. Rev. Lett. 2001, 88, 017901; b) H. Henderson, V. J. Vedral, J. Phys. A 2001, 34, 6899; c) S. J. Jones, H. M. Wiseman, A. C. Doherty, Phys. Rev. A 2007, 76, 052116; d) E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, M. D. Reid, Phys. Rev. A 2009, 80, 032112; e) S. L. W. Midgley, A. J. Ferris, M. K. Olse, Phys. Rev. A 2010, 81, 022101; f) J. Bowles, T. Vértesi, M. T. Quintino, N. Brunner, Phys. Rev. Lett. 2014, 112, 200402.
- 10R. F. Werner, Phys. Rev. A 1989, 40, 4277.
- 11a) H. M. Wiseman, S. J. Jones, A. C. Doherty, Phys. Rev. Lett. 2007, 98, 140402; b) S. L. W. Midgley, A. J. Ferris, M. K. Olsen, Phys. Rev. A 2010, 81, 022101; c) L. Rosales-Zárate, R. Y. Teh, S. Kiesewetter, A. Brolis, K. Ng, M. D. Reid, JOSA B 2015, 32, A82.
- 12V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, R. Schnabel, Nat. Photonics 2012, 6, 596.
- 13M. K. Olsen, A. S. Bradley, Phys. Rev. A 2008, 77, 023813.
- 14a) M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 2008, 100, 090502; b) S. Luo, W. Sun, Phys. Rev. A 2010, 82, 012338.
- 15K. Modi, H. Cable, M. Williamson, V. Vedral, Phys. Rev. X 2011, 1, 021022.
- 16a) M. Horodecki, J. Oppenheim, A. Winter, Nature 2005, 436, 673; b) D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, A. Winter, Phys. Rev. A 2011, 83, 032324; c) V. Madhok, A. Datta, Phys. Rev. A 2011, 83, 032323.
- 17B. Dakić, Y. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, C. Brukner, P. Walther, Nat. Phys. 2012, 8, 666.
- 18C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, H. M. Wiseman, Phys. Rev. A 2012, 85, 010301(R).
- 19B. Opanchuk, L. Arnaud, M. D. Reid, Phys. Rev. A 2014, 89, 062101.
- 20C. Kittel, Phys. Rev. 1948, 73, 155.
- 21a) L. H. Bai, M. Harder, P. Hyde, Z. Zhang, C.-M. Hu, Y. P. Chen, J. Q. Xiao, Phys. Rev. Lett. 2017, 118, 217201; b) Y.-P. Wang, G.-Q. Zhang, D. Zhang, T.-F. Li, C.-M. Hu, J. Q. You, Phys. Rev. Lett. 2018, 120, 057202; c) Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Science 2015, 349, 405; d) D. Lachance-Quirion, Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, Y. Nakamura, Sci. Adv. 2017, 3, e1603150; e) X. F. Zhang, N. Zhu, C.-L. Zou, H. X. Tang, Phys. Rev. Lett. 2016, 117, 123605; f) A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, Y. Nakamura, Phys. Rev. Lett. 2016, 116, 223601; g) S. Sharma, Y. M. Blanter, G. E. W. Bauer, Phys. Rev. Lett. 2018, 121, 087205; h) C. Kong, H. Xiong, Y. Wu, Phys. Rev. Appl. 2019, 12, 034001; i) Z. D. Zhang, M. O. Scully, G. S. Agarwal, Phys. Rev. Res. 2019, 1, 023021; j) Y. P. Wang, J. W. Rao, Y. Yang, P.-C. Xu, Y. S. Gui, B. M. Yao, J. Q. You, C.-M. Hu, Phys. Rev. Lett. 2019, 123, 127202; k) P. C. Xu, J. W. Rao, Y. S. Gui, X. Jin, C.-M. Hu, Phys. Rev. B 2019, 100, 094415; l) D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, Y. Nakamura, Appl. Phys. Express 2019, 12, 070101; m) G. Q. Zhang, J. Q. You, Phys. Rev. B 2019, 99, 054404; n) H. Y. Yuan, P. Yan, S. Zheng, Q. Y. He, K. Xia, M.-H. Yung, Phys. Rev. Lett. 2020, 124, 053602.
- 22X. F. Zhang, C. L. Zou, L. Jiang, H. X. Tang, Sci. Adv. 2016, 2, e1501286.
- 23a) J. Li, S. Y. Zhu, G. S. Agarwal, Phys. Rev. Lett. 2018, 121, 203601; b) J. Li, S. Y. Zhu, G. S. Agarwal, Phys. Rev. A. 2019, 99, 021801(R); c) J. Li, S. Y. Zhu, New J. Phys. 2019, 21, 085001; d) M. Yu, H. Shen, J. Li, Phys. Rev. Lett. 2020, 124, 213604; e) J. Li, S. Groblacher, arXiv: 2007.09083, 2021.
- 24a) H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, S. T. B. Goennenwein, Phys. Rev. Lett. 2013, 111, 127003; b) X. Zhang, C.-L. Zou, L. Jiang, H. X. Tang, Phys. Rev. Lett. 2014, 113, 156401; c) M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, M. E. Tobar, Phys. Rev. Applied 2014, 2, 054002; d) L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, C.-M. Hu, Phys. Rev. Lett. 2015, 114, 227201.
- 25a) C. W. Gardiner, M. J. Collett, Phys. Rev. A 1985, 31, 3761; b) M. Yu, S. Y. Zhu, J. Li, J. Phys. B 2020, 53, 065402.
- 26a) Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Phys. Rev. Lett. 2014, 113, 083603; b) D. Zhang, X.-M. Wang, T.-F. Li, X.-Q. Luo, W. Wu, F. Nori, J. Q. You, npj Quantum Inf. 2015, 1, 15014.
- 27D. Zhang, X. Q. Luo, Y. P. Wang, T. F. Li, J. Q. You, Nat. Commun. 2017, 8, 1368.
- 28a) L. R. Walker, Phys. Rev. 1957, 105, 390; b) L. R. Walker, J. Appl. Phys. 1958, 29, 318.
- 29a) B. Yurke, J. Opt. Soc. Am. B 1987, 4, 1551; b) B. Yurke, P. G. Kaminsky, R. E. Miller, E. A. Whittaker, A. D. Smith, A. H. Silver, R. W. Simon, Phys. Rev. Lett. 1988, 60, 764; c) B. Yurke, L. R. Corruccini, P. G. Kaminsky, L. W. Rupp, A. D. Smith, A. H. Silver, R. W. Simon, E. A. Whittaker, Phys. Rev. A 1989, 39, 2519; d) R. Movshovich, B. Yurke, P. G. Kaminsky, A. D. Smith, A. H. Silver, R. W. Simon, M. V. Schneider, Phys. Rev. Lett. 1990, 65, 1419; e) M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, K. W. Lehnert, Nat. Phys. 2008, 4, 929; f) T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D. Oliver, Y. Nakamura, J. S. Tsai, Appl. Phys. Lett. 2008, 93, 042510; g) F. Mallet, M. A. Castellanos-Beltran, H. S. Ku, S. Glancy, E. Knill, K. D. Irwin, G. C. Hilton, L. R. Vale, K. W. Lehnert, Phys. Rev. Lett. 2011, 106, 220502; h) E. P. Menzel, R. Di Candia, F. Deppe, P. Eder, L. Zhong, M. Ihmig, M. Haeberlein, A. Baust, E. Hoffmann, D. Ballester, K. Inomata, T. Yamamoto, Y. Nakamura, E. Solano, A. Marx, R. Gross, Phys. Rev. Lett. 2012, 109, 250502; i) L. Zhong, E. P. Menzel, R. Di Candia, P. Eder, M. Ihmig, A. Baust, M. Haeberlein, E. Hoffmann, K. Inomata, T. Yamamoto, Y. Nakamura, E. Solano, F. Deppe, A. Marx, R. Gross, New J. Phys. 2013, 15, 125013; j) K. G. Fedorov, L. Zhong, S. Pogorzalek, P. Eder, M. Fischer, J. Goetz, E. Xie, F. Wulschner, K. Inomata, T. Yamamoto, Y. Nakamura, R. Di Candia, U. Las Heras, M. Sanz, E. Solano, E. P. Menzel, F. Deppe, A. Marx, R. Gross, Phys. Rev. Lett. 2016, 117, 020502; k) S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, Y. Nakamura, Phys. Rev. Lett. 2017, 119, 023602; l) A. Bienfait, P. Campagne-Ibarcq, A. H. Kiilerich, X. Zhou, S. Probst, J. J. Pla, T. Schenkel, D. Vion, D. Esteve, J. J. L. Morton, K. Moelmer, P. Bertet, Phys. Rev. X 2017, 7, 041011; m) M. Malnou, D. A. Palken, Leila R. Vale, Gene C. Hilton, K. W. Lehnert, Phys. Rev. Appl. 2018, 9, 044023.
- 30M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 2014, 86, 1391.
- 31a) G. Vidal, R. F. Werner, Phys. Rev. A 2002, 65, 032314; b) G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. A 2004, 70, 022318; c) J. Eisert, Ph.D. thesis, University of Potsdam, Potsdam 2001; d) M. B. Plenio, Phys. Rev. Lett. 2005, 95, 090503.
- 32C. G. Liao, H. Xie, R. X. Chen, M. Y. Ye, X. M. Lin, Phys. Rev. A 2020, 101, 032120.
- 33E. X. DeJesus, C. Kaufman, Phys. Rev. A 1987, 35, 5288.
- 34a) C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, Phys. Rev. A 2008, 77, 033804; b) C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, Phys. Rev. A 2009, 79, 039903(E).
- 35W. Zhong, D. Zhao, G. Cheng, A. Chen, Opt. Commun. 2021, 497, 127138.
- 36Z. B. Yang, X.-D. Liu, X.-Y. Yin, Y. Ming, H.-Y. Liu, R.-C. Yang, Phys. Rev. Applied 2021, 15, 024042.
- 37T. Holstein, H. Primakoff, Phys. Rev. 1940, 58, 1098.
- 38S. Kiesewetter, R. Y. Teh, P. D. Drummond, M. D. Reid, Phys. Rev. Lett. 2017, 119, 023601.