An Introduction to the Chemistry and Properties of Excited-State Mixed-Valence Systems
Ivana Ramírez-Wierzbicki
Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
CONICET — Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
Search for more papers by this authorAgustina Cotic
Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
CONICET — Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
Search for more papers by this authorAlejandro Cadranel
Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
CONICET — Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Physical Chemistry I, Egerlandstr. 3, Erlangen, 91058 Germany
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Interdisciplinary Center for Molecular Materials, Egerlandstr. 3, Erlangen, 91058 Germany
Search for more papers by this authorIvana Ramírez-Wierzbicki
Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
CONICET — Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
Search for more papers by this authorAgustina Cotic
Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
CONICET — Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
Search for more papers by this authorAlejandro Cadranel
Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
CONICET — Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Physical Chemistry I, Egerlandstr. 3, Erlangen, 91058 Germany
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Interdisciplinary Center for Molecular Materials, Egerlandstr. 3, Erlangen, 91058 Germany
Search for more papers by this authorAbstract
While ground-state mixed-valence systems are very well known, excited-state mixed-valence (ES-MV) systems received comparably less attention. Intervalence charge-transfer (IVCT) excited states, locally excited mixed-valence (LE-MV) systems, and photoinduced mixed-valence (PI-MV) systems are different types of ES-MV systems. They are the simplest models for excited-state electron transfer reactions, and therefore crucial in the development of solar energy conversion schemes. IVCT exited states are the best-known ES-MV systems and are usually called electronic isomers or redox isomers of the ground state. Their back electron transfer reactivity depends on whether it proceeds with or without spin conservation. LE-MV systems feature locally excited donors or acceptors, and their reactivity might be dominated by locally excited states or IVCT excited states. PI-MV systems include charge transfer counterparts, which can adopt different spatial distributions with respect to the mixed-valence core. Depending on the location of the charge-transfer counterpart, drastic changes in the electronic configuration of PI-MV systems can arise, with equally important impact on their reactivity in comparison to only the donor or the acceptor. This review addresses different processes that lead to the generation of ES-MV systems, their properties, reactivity, and spectroscopy. Additionally, the experimental techniques usually employed to study ES-MV systems are briefly discussed, together with theoretical formalisms and classifications which were developed for the ground state but can also be applied to the excited state.
References
- 1R. F. Winter, Organometallics, 2014, 33, 4517.
- 2B. S. Brunschwig and N. Sutin, Coord. Chem. Rev., 1999, 187, 233.
- 3B. S. Brunschwig, C. Creutz and N. Sutin, Chem. Soc. Rev., 2002, 31, 168.
- 4N. S. Hush, Prog. Inorg. Chem., 1967, 8, 391.
- 5P. Müller and K. Brettel, Photochem. Photobiol. Sci., 2012, 11, 632.
- 6N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank and J. K. McCusker, Science, 1997, 275, 54.
- 7M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem., 1968, 10, 247.
- 8J. J. Concepcion, D. M. Dattelbaum, T. J. Meyer and R. C. Rocha, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2008, 366, 163.
- 9T. Ito, T. Hamaguchi, H. Nagino, T. Yamaguchi, J. Washington and C. P. Kubiak, Science, 1997, 277, 660.
- 10K. D. Demadis, C. M. Hartshorn and T. J. Meyer, Chem. Rev., 2001, 101, 2655.
- 11T. Ito, T. Hamaguchi, H. Nagino, T. Yamaguchi, H. Kido, I. S. Zavarine, T. Richmond, J. Washington and C. P. Kubiak, J. Am. Chem. Soc., 1999, 121, 4625.
- 12T. Ito, N. Imai, T. Yamaguchi, T. Hamaguchi, C. H. Londergan and C. P. Kubiak, Angew. Chem. Int. Ed., 2004, 43, 1376.
- 13R. C. Rocha and A. P. Shreve, Chem. Phys., 2006, 326, 24.
- 14C. H. Londergan, J. C. Salsman, S. Ronco and C. P. Kubiak, Inorg. Chem., 2003, 42, 926.
- 15C. A. Bignozzi, S. Roffia and F. Scandola, J. Am. Chem. Soc., 1985, 107, 1644.
- 16C. Alberto Bignozzi, F. Scandola, C. Paradisi and S. Roffia, Inorg. Chem., 1988, 27, 408.
10.1021/ic00275a033 Google Scholar
- 17C. A. Bignozzi, S. Roffia, C. Chiorboli, J. Davila, M. T. Indelli and F. Scandola, Inorg. Chem., 1989, 28, 4350.
- 18J. C. Curtis, J. S. Bernstein and T. J. Meyer, Inorg. Chem., 1985, 24, 385.
- 19E. H. Cutin and N. E. Katz, Polyhedron, 1993, 12, 955.
- 20K. Nozaki and T. Ohno, Coord. Chem. Rev., 1994, 132, 215.
- 21A. Ponce, M. Bachrach, P. J. Farmer and J. R. Winkler, Inorg. Chim. Acta, 1996, 243, 135.
- 22B. Gholamkhass, K. Nozaki and T. Ohno, J. Phys. Chem. B, 1997, 101, 9010.
- 23H. Lu, V. Petrov and J. T. Hupp, Chem. Phys. Lett., 1995, 235, 521.
- 24G. C. Walker, P. F. Barbara, S. K. Doorn, Y. Dong and J. T. Hupp, J. Phys. Chem., 1991, 95, 5712.
- 25D. A. V. Kliner, K. Tominaga, G. C. Walker and P. F. Barbara, J. Am. Chem. Soc., 1992, 114, 8323.
- 26K. Tominaga, D. A. V. Kliner, A. E. Johnson, N. E. Levinger and P. F. Barbara, J. Chem. Phys., 1993, 98, 1228.
- 27P. J. Reid, C. Silva, P. F. Barbara, L. Karki and J. T. Hupp, J. Phys. Chem., 1995, 99, 2609.
- 28P. Kambhampati, D. H. Son, T. W. Kee and P. F. Barbara, J. Phys. Chem. A, 2000, 104, 10637.
- 29D. H. Son, P. Kambhampati, T. W. Kee and P. F. Barbara, J. Phys. Chem. A, 2002, 106, 4591.
- 30S. K. Doorn, P. O. Stoutland, R. B. Dyer and W. H. Woodruff, J. Am. Chem. Soc., 1992, 114, 3133.
- 31S. K. Doorn, R. B. Dyer, P. O. Stoutland and W. H. Woodruff, J. Am. Chem. Soc., 1993, 115, 6398.
- 32C. Wang, B. K. Mohney, B. B. Akhremitchev and G. C. Walker, J. Phys. Chem. A, 2000, 104, 4314.
- 33A. V. Tivanski, C. Wang and G. C. Walker, J. Phys. Chem. A, 2003, 107, 9051.
- 34D. F. Watson, H. S. Tan, E. Schreiber, C. J. Mordas and A. B. Bocarsly, J. Phys. Chem. A, 2004, 108, 3261.
- 35M. S. Lynch, B. E. Van Kuiken, S. L. Daifuku and M. Khalil, J. Phys. Chem. Lett., 2011, 2, 2252.
- 36M. S. Lynch, K. M. Slenkamp and M. Khalil, J. Chem. Phys., 2012, 136, 241101. DOI: 10.1063/1.4731882.
- 37K. M. Slenkamp, M. S. Lynch, J. F. Brookes, C. C. Bannan, S. L. Daifuku and M. Khalil, Struct. Dyn., 2016, 3, 023609. DOI: 10.1063/1.4943766.
- 38E. Biasin, Z. W. Fox, A. Andersen, K. Ledbetter, K. S. Kjær, R. Alonso-Mori, J. M. Carlstad, M. Chollet, J. D. Gaynor, J. M. Glownia, K. Hong, T. Kroll, J. H. Lee, C. Liekhus-Schmaltz, M. Reinhard, D. Sokaras, Y. Zhang, G. Doumy, A. M. March, S. H. Southworth, S. Mukamel, K. J. Gaffney, R. W. Schoenlein, N. Govind, A. A. Cordones and M. Khalil, Nat. Chem., 2021, 13, 343.
- 39C. Liekhus-Schmaltz, Z. W. Fox, A. Andersen, K. S. Kjaer, R. Alonso-Mori, E. Biasin, J. Carlstad, M. Chollet, J. D. Gaynor, J. M. Glownia, K. Hong, T. Kroll, J. H. Lee, B. I. Poulter, M. Reinhard, D. Sokaras, Y. Zhang, G. Doumy, A. M. March, S. H. Southworth, S. Mukamel, A. A. Cordones, R. W. Schoenlein, N. Govind and M. Khalil, J. Phys. Chem. Lett., 2022, 13, 378.
- 40C. Creutz, P. Kroger, T. Matsubara, T. L. Netzel and N. Sutin, J. Am. Chem. Soc., 1979, 101, 5442.
- 41S. D. Su, X. Q. Zhu, L. T. Zhang, Y. Y. Yang, Y. H. Wen, X. T. Wu, S. Q. Yang and T. L. Sheng, Dalton Trans., 2019, 48, 9303.
- 42M. I. Bruce, P. J. Low, K. Costuas, J. F. Halet, S. P. Best and G. A. Heath, J. Am. Chem. Soc., 2000, 122, 1949.
- 43J. B. G. Gluyas, A. N. Sobolev, E. G. Moore and P. J. Low, Organometallics, 2015, 34, 3923.
- 44J. Grilj, E. N. Laricheva, M. Olivucci and E. Vauthey, Angew. Chem. Int. Ed., 2011, 50, 4496.
- 45J. Grilj, P. Buchgraber and E. Vauthey, J. Phys. Chem. A, 2012, 116, 7516.
- 46C. Lambert, M. Moos, A. Schmiedel, M. Holzapfel, J. Schäfer, M. Kess and V. Engel, Phys. Chem. Chem. Phys., 2016, 18, 19405.
- 47F. Glaab, J. G. Wehner, C. Lambert and V. Engel, J. Phys. Chem. A, 2019, 123, 5463.
- 48S. Dümmler, W. Roth, I. Fischer, A. Heckmann and C. Lambert, Chem. Phys. Lett., 2005, 408, 264.
- 49R. Maksimenka, M. Margraf, J. Köhler, A. Heckmann, C. Lambert and I. Fischer, Chem. Phys., 2008, 347, 436.
- 50A. Heckmann, S. Dümmler, J. Pauli, M. Margraf, J. Köhler, D. Stich, C. Lambert, I. Fischer and U. Resch-Genger, J. Phys. Chem. C, 2009, 113, 20958.
- 51J. F. Endicott, X. Song, M. A. Watzky and T. Buranda, J. Photochem. Photobiol. A Chem., 1994, 82, 181.
- 52M. T. Indelli, C. A. Bignozzi, A. Harriman, J. R. Schoonover and F. Scandola, J. Am. Chem. Soc., 1994, 116, 3768.
- 53H. Torieda, K. Nozaki, A. Yoshimura and T. Ohno, J. Phys. Chem. A, 2004, 108, 4819.
- 54A. Yoshimura, H. Torieda and T. Ohno, J. Phys. Chem. A, 2004, 108, 2149.
- 55M. A. Watzky, S. Xiaoqing and J. F. Endicott, Inorg. Chim. Acta, 1994, 226, 109.
- 56J. K. McCusker, K. N. Walda, R. C. Dunn, J. D. Simon, D. Magde and D. N. Hendrickson, J. Am. Chem. Soc., 1992, 114, 6919.
- 57J. K. McCusker, K. N. Walda, R. C. Dunn, J. D. Simon, D. Magde and D. N. Hendrickson, J. Am. Chem. Soc., 1993, 115, 298.
- 58J. K. McCusker, A. L. Rheingold and D. N. Hendrickson, Inorg. Chem., 1996, 35, 2100.
- 59E. A. Juban, A. L. Smeigh, J. E. Monat and J. K. McCusker, Coord. Chem. Rev., 2006, 250, 1783.
- 60J. K. McCusker, Science, 2019, 363, 484.
- 61C. Förster and K. Heinze, Chem. Soc. Rev., 2020, 49, 1057.
- 62C. Wegeberg and O. S. Wenger, JACS Au, 2021, 1, 1860.
- 63A. Hauser, Top. Curr. Chem., 2004, 234, 155.
- 64P. Gütlich and H. A. Goodwin, Top. Curr. Chem., 2004, 233, 1.
- 65K. Barlow and J. O. Johansson, Phys. Chem. Chem. Phys., 2021, 23, 8118.
- 66T. Buranda, Y. Lei and J. F. Endicott, J. Am. Chem. Soc., 1992, 114, 6916.
- 67B. P. Macpherson, P. V. Bernhardt, A. Hauser, S. Pagès and E. Vauthey, Inorg. Chem., 2005, 44, 5530.
- 68J. Zimara, H. Stevens, R. Oswald, S. Demeshko, S. Dechert, R. A. Mata, F. Meyer and D. Schwarzer, Inorg. Chem., 2021, 60, 449.
- 69X. Song, Y. Lei, S. Van Wallendal, M. W. Perkovic, D. C. Jackman, J. F. Endicott and D. Paul Rillema, J. Phys. Chem., 1993, 97, 3225.
- 70S. E. Canton, K. S. Kjær, G. Vankó, T. B. Van Driel, S. I. Adachi, A. Bordage, C. Bressler, P. Chabera, M. Christensen, A. O. Dohn, A. Galler, W. Gawelda, D. Gosztola, K. Haldrup, T. Harlang, Y. Liu, K. B. Møller, Z. Németh, S. Nozawa, M. Pápai, T. Sato, T. Sato, K. Suarez-Alcantara, T. Togashi, K. Tono, J. Uhlig, D. A. Vithanage, K. Wärnmark, M. Yabashi, J. Zhang, V. Sundström and M. M. Nielsen, Nat. Commun., 2015, 6, 1.
- 71S. M. Arachchige, J. Brown and K. J. Brewer, J. Photochem. Photobiol. A Chem., 2008, 197, 13.
- 72T. A. White, K. Rangan and K. J. Brewer, J. Photochem. Photobiol. A Chem., 2010, 209, 203.
- 73T. A. White, S. L. H. Higgins, S. M. Arachchige and K. J. Brewer, Angew. Chem. Int. Ed., 2011, 50, 12209.
- 74H. M. Rogers, T. A. White, B. N. Stone, S. M. Arachchige and K. J. Brewer, Inorg. Chem., 2015, 54, 3545.
- 75G. F. Manbeck, E. Fujita and K. J. Brewer, J. Am. Chem. Soc., 2017, 139, 7843.
- 76T. Cuk, W. W. Weare and H. Frei, J. Phys. Chem. C, 2010, 114, 9167.
- 77B. A. McClure and H. Frei, J. Phys. Chem. C, 2014, 118, 11601.
- 78A. D. Hill, G. Katsoukis and H. Frei, J. Phys. Chem. C, 2018, 122, 20176.
- 79G. Katsoukis and H. Frei, ACS Appl. Mater. Interfaces, 2018, 10, 31422.
- 80X. Wu, W. W. Weare and H. Frei, Dalton Trans., 2009, 10114.
- 81R. Nakamura, A. Okamoto, H. Osawa, H. Irie and K. Hashimoto, J. Am. Chem. Soc., 2007, 129, 9596.
- 82W. Lin and H. Frei, J. Am. Chem. Soc., 2005, 127, 1610.
- 83M. L. Macnaughtan, H. Sen Soo and H. Frei, J. Phys. Chem. C, 2014, 118, 7874.
- 84H. Han and H. Frei, J. Phys. Chem. C, 2008, 112, 8391.
- 85W. Kim, G. Yuan, B. A. McClure and H. Frei, J. Am. Chem. Soc., 2014, 136, 11034.
- 86A. Yamaguchi, T. Takashima, K. Hashimoto and R. Nakamura, Chem. Mater., 2017, 29, 7234.
- 87L. Favereau, A. Makhal, D. Provost, Y. Pellegrin, E. Blart, E. Göransson, L. Hammarström and F. Odobel, Phys. Chem. Chem. Phys., 2017, 19, 4778.
- 88A. Cadranel, L. Gravogl, D. Munz and K. Meyer, Chem. – A Eur. J., 2022, 28, e202200269. DOI: 10.1002/chem.202200269.
- 89B. M. Aramburu-Trošelj, I. Ramírez-Wierzbicki, F. Scarcasale, P. S. Oviedo, L. M. Baraldo and A. Cadranel, J. Phys. Chem. Lett., 2020, 11, 8399.
- 90C. A. Bignozzi, M. T. Indelli and F. Scandola, J. Am. Chem. Soc., 1989, 111, 5192.
- 91J. F. Endicott, T. Ramasami, R. Tamilarasan, R. B. Lessard, C. K. Ryu and G. R. Brubaker, Coord. Chem. Rev., 1987, 77, 1.
- 92D. M. Arias-Rotondo and J. K. McCusker, Chem. Soc. Rev., 2016, 45, 5803.
- 93A. Cadranel, P. S. Oviedo, P. Alborés, L. M. Baraldo, D. M. Guldi and J. H. Hodak, Inorg. Chem., 2018, 57, 3042.
- 94Y. Lei, T. Buranda and J. F. Endicott, J. Am. Chem. Soc., 1990, 112, 8820.
- 95C. A. Bignozzi, R. Argazzi, F. Scandola, J. R. Schoonover, K. C. Gordon and R. B. Dyer, Inorg. Chem., 1992, 31, 5260.
- 96M. T. Indelli and F. Scandola, J. Phys. Chem., 1993, 97, 3328.
- 97J. F. Endicott, P. G. McNamara, T. Buranda and A. V. Macatangay, Coord. Chem. Rev., 2000, 208, 61.
- 98Y. J. Chen, P. Xie and J. F. Endicott, J. Phys. Chem. A, 2004, 108, 5041.
- 99Y. J. Chen, J. F. Endicott and P. G. McNamarra, J. Phys. Chem. B, 2007, 111, 6748.
- 100Y. J. Chen, O. S. Odongo, P. G. McNamara, K. T. Szacilowski and J. F. Endicott, Inorg. Chem., 2008, 47, 10921.
- 101J. F. Endicott and Y.-J. Chen, Coord. Chem. Rev., 2013, 257, 1676.
- 102A. Cadranel, J. E. Tate, P. S. Oviedo, S. Yamazaki, J. H. Hodak, L. M. Baraldo and V. D. Kleiman, Phys. Chem. Chem. Phys., 2017, 19, 2882.
- 103P. S. Oviedo, L. M. Baraldo and A. Cadranel, Proc. Natl. Acad. Sci., 2021, 118, e2018521118.
- 104J. F. Endicott and Y. J. Chen, Inorg. Chim. Acta, 2007, 360, 913.
- 105M. H. Chisholm, S. E. Brown-Xu and T. F. Spilker, Acc. Chem. Res., 2015, 48, 877.
- 106D. W. Thompson, A. Ito and T. J. Meyer, Pure Appl. Chem., 2013, 85, 1257.
- 107T. Cardona, A. Sedoud, N. Cox and A. W. Rutherford, Biochim. Biophys. Acta Bioenerg., 2012, 1817, 26.
- 108P. D. Harvey, Can. J. Chem., 2014, 92, 355.
- 109K. Mitsuhashi, H. Tamura, K. Saito and H. Ishikita, J. Phys. Chem. B, 2021, 125, 2879.
- 110L. Hammarström and S. Styring, Energy Environ. Sci., 2011, 4, 2379.
- 111J. Breton, E. Nabedryk and W. W. Parson, Biochemistry, 1992, 31, 7503.
- 112J. R. Reimers and N. S. Hush, Artif. Photosynth. Basic Biol. Ind. Appl., 2006, 109.
- 113C. Creutz and H. Taube, J. Am. Chem. Soc., 1969, 91, 3988.
- 114C. Creutz and H. Taube, J. Am. Chem. Soc., 1973, 95, 1086.
- 115J. T. Hupp, Compr. Coord. Chem., 2004, II, 709.
- 116H. Taube, Science, 1984, 226, 1028.
- 117G. E. Pieslinger, I. Ramírez-Wierzbicki and A. Cadranel, Angew. Chem. Int. Ed., 2022, 61, e202211747. DOI: 10.1002/anie.202211747.
- 118I. Ramírez-Wierzbicki, G. E. Pieslinger, B. M. Aramburu-Trošelj, P. O. Abate and A. Cadranel, Inorg. Chem., 2023, 62, 3808. DOI: 10.1021/acs.inorgchem.2c04054.
- 119C. N. Fleming, D. M. Dattelbaum, D. W. Thompson, A. Y. Ershov and T. J. Meyer, J. Am. Chem. Soc., 2007, 129, 9622.
- 120D. M. Dattelbaum, C. M. Hartshorn and T. J. Meyer, J. Am. Chem. Soc., 2002, 124, 4938.
- 121M. W. George, F. P. A. Johnson, J. J. Turner and J. R. Westwell, J. Chem. Soc. Dalton Trans., 1995, 2711.
- 122B. T. Weldon, D. E. Wheeler, J. P. Kirby and J. K. McCusker, Inorg. Chem., 2001, 40, 6802.
- 123R. N. Sampaio, E. J. Piechota, L. Troian-Gautier, A. B. Maurer, K. Hu, P. A. Schauer, A. D. Blair, C. P. Berlinguette and G. J. Meyer, Proc. Natl. Acad. Sci., 2018, 115, 7248.
- 124L. F. Cooley, P. Bergquist and D. F. Kelley, J. Am. Chem. Soc., 1990, 112, 2612.
- 125T. Yabe, L. K. Orman, D. R. Anderson, S. C. Yu, X. Xu and J. B. Hopkins, J. Phys. Chem., 1990, 94, 7128.
- 126S. Wallin, J. Davidsson, J. Modin and L. Hammarström, J. Phys. Chem. A, 2005, 109, 4697.
- 127A. T. Yeh, C. V. Shank and J. K. McCusker, Science, 2000, 289, 935.
- 128J. P. Cushing, C. Butoi and D. F. Kelley, J. Phys. Chem. A, 1997, 101, 7222.
- 129M. R. Waterland and D. F. Kelley, J. Phys. Chem. A, 2001, 105, 4019.
- 130J. L. Pogge and D. F. Kelley, Chem. Phys. Lett., 1995, 238, 16.
- 131G. A. Heath, L. J. Yellowlees and P. S. Braterman, Chem. Phys. Lett., 1982, 92, 646.
- 132A. G. Motten, K. Hanck and M. K. DeArmond, Chem. Phys. Lett., 1981, 79, 541.
- 133D. E. Morris, K. W. Hanck and M. K. DeArmond, J. Am. Chem. Soc., 1983, 105, 3032.
- 134J. N. Gex, W. Brewer, K. Bergmann, C. D. Tait, M. K. DeArmond, K. W. Hanck and D. W. Wertz, J. Phys. Chem., 1987, 91, 4776.
- 135J. O. Taylor, M. Pižl, M. Kloz, M. Rebarz, C. E. McCusker, J. K. McCusker, S. Záliš, F. Hartl and A. Vlček, Inorg. Chem., 2021, 60, 3514.
- 136E. A. Plummer and J. I. Zink, Inorg. Chem., 2006, 45, 6556.
- 137E. L. Patrick, C. J. Ray, G. D. Meyer, T. P. Ortiz, J. A. Marshall, J. A. Brozik, M. A. Summers and J. W. Kenney, J. Am. Chem. Soc., 2003, 125, 5461.
- 138M. H. Chisholm, B. J. Lear, A. Moscatelli and L. A. Peteanu, Inorg. Chem., 2010, 49, 3706.
- 139B. G. Alberding, M. H. Chisholm, J. C. Gallucci, Y. Ghosh and T. L. Gustafson, Proc. Natl. Acad. Sci., 2011, 108, 8152.
- 140B. G. Alberding, S. E. Brown-Xu, M. H. Chisholm, J. C. Gallucci, T. L. Gustafson, V. Naseri, C. R. Reed and C. Turro, Dalton Trans., 2012, 41, 12270.
- 141S. E. Brown-Xu, M. H. Chisholm, C. B. Durr and T. F. Spilker, J. Am. Chem. Soc., 2013, 135, 8254.
- 142S. E. Brown-Xu, M. H. Chisholm, C. B. Durr, T. L. Gustafson and T. F. Spilker, J. Phys. Chem. A, 2013, 117, 5997.
- 143S. E. Brown-Xu, M. H. Chisholm, C. B. Durr, T. L. Gustafson, V. Naseri and T. F. Spilker, J. Am. Chem. Soc., 2012, 134, 20820.
- 144S. E. Brown-Xu, M. H. Chisholm, C. B. Durr and T. F. Spilker, J. Phys. Chem. A, 2013, 117, 13893.
- 145C. Jiang, P. J. Young, S. Brown-Xu, J. C. Gallucci and M. H. Chisholm, Inorg. Chem., 2017, 56, 1433.
- 146S. E. Brown-Xu, M. H. Chisholm, C. B. Durr, S. A. Lewis, T. F. Spilker and P. J. Young, Inorg. Chem., 2014, 53, 637.
- 147C. Jiang, P. J. Young, C. B. Durr, T. F. Spilker and M. H. Chisholm, Inorg. Chem., 2016, 55, 5836.
- 148C. Jiang, P. J. Young, S. E. Brown-Xu, W. T. Kender, E. J. M. Hamilton, J. C. Gallucci and M. H. Chisholm, Inorg. Chem., 2017, 56, 9660.
- 149W. Z. Alsindi, T. L. Easun, X. Z. Sun, K. L. Ronayne, M. Towrie, J. M. Herrera, M. W. George and M. D. Ward, Inorg. Chem., 2007, 46, 3696.
- 150L. C. Abbott, C. J. Arnold, T.-Q. Ye, K. C. Gordon, R. N. Perutz, R. E. Hester and J. N. Moore, J. Phys. Chem. A, 1998, 102, 1252.
- 151M. K. Kuimova, K. C. Gordon, S. L. Howell, P. Matousek, A. W. Parker, X. Z. Sun, M. Towrie and M. W. George, Photochem. Photobiol. Sci., 2006, 5, 82.
- 152M. G. Fraser, C. A. Clark, R. Horvath, S. J. Lind, A. G. Blackman, X. Sun, M. W. George and K. C. Gordon, Inorg. Chem., 2011, 50, 6093.
- 153J. M. Herrera, S. J. A. Pope, A. J. H. M. Meijer, T. L. Easun, H. Adams, W. Z. Alsindi, X. Z. Sun, M. W. George, S. Faulkner and M. D. Ward, J. Am. Chem. Soc., 2007, 129, 11491.
- 154A. B. Wragg, S. Derossi, T. L. Easun, M. W. George, X. Z. Sun, F. Hartl, A. H. Shelton, A. J. H. M. Meijer and M. D. Ward, Dalton Trans., 2012, 41, 10354.
- 155F. Baumann, W. Kaim, M. García Posse and N. E. Katz, Inorg. Chem., 1998, 37, 658.
- 156C. S. Araújo, M. G. B. Drew, V. Félix, L. Jack, J. Madureira, M. Newell, S. Roche, T. M. Santos, J. A. Thomas and L. Yellowlees, Inorg. Chem., 2002, 41, 2250.
- 157Y. J. Chen, J. F. Endicott and V. Swayambunathan, Chem. Phys., 2006, 326, 79.
- 158J. F. Endicott and Y. J. Chen, Coord. Chem. Rev., 2007, 251, 328.
- 159J. V. Lockard, J. I. Zink, D. A. Trieber, A. E. Konradsson, M. N. Weaver and S. F. Nelsen, J. Phys. Chem. A, 2005, 109, 1205.
- 160J. V. Lockard, J. I. Zink, Y. Luo, M. N. Weaver, A. E. Konradsson, J. W. Fowble and S. F. Nelsen, J. Am. Chem. Soc., 2006, 128, 16524.
- 161J. V. Lockard, G. Valverde, D. Neuhauser, J. I. Zink, Y. Luo, M. N. Weaver and S. F. Nelsen, J. Phys. Chem. A, 2006, 110, 57.
- 162R. M. Hoekstra, M. M. Dibrell, M. N. Weaver, S. F. Nelsen and J. I. Zink, J. Phys. Chem. A, 2009, 113, 456.
- 163M. Dibrelle, R. Hoekstra, M. N. Weaver, K. Okada, S. F. Nelsen and J. I. Zink, J. Phys. Org. Chem., 2012, 25, 578.
- 164J. V. Lockard, J. I. Zink, A. E. Konradsson, M. N. Weaver and S. F. Nelsen, J. Am. Chem. Soc., 2003, 125, 13471.
- 165S. F. Nelsen, A. E. Konradsson, M. N. Weaver, I. A. Guzei, M. Goebel, R. Wortmann, J. V. Lockard and J. I. Zink, J. Phys. Chem. A, 2005, 109, 10854.
- 166A. Cadranel, P. Alborés, S. Yamazaki, V. D. Kleiman and L. M. Baraldo, Dalton Trans., 2012, 41, 5343.
- 167A. Cadranel, B. M. Aramburu Trošelj, S. Yamazaki, P. Alborés, V. D. Kleiman and L. M. Baraldo, Dalton Trans., 2013, 42, 16723.
- 168B. M. Aramburu-Trošelj, P. S. Oviedo, I. Ramírez-Wierzbicki, L. M. Baraldo and A. Cadranel, Chem. Commun., 2019, 55, 7659.
- 169G. E. Pieslinger, B. M. Aramburu-Trošelj, A. Cadranel and L. M. Baraldo, Inorg. Chem., 2014, 53, 8221.
- 170B. M. Aramburu-Trošelj, P. S. Oviedo, G. E. Pieslinger, J. H. Hodak, L. M. Baraldo, D. M. Guldi and A. Cadranel, Inorg. Chem., 2019, 58, 10898.
- 171K. Tahara, H. Koyama, M. Fujitsuka, K. Tokunaga, X. Lei, T. Majima, J. I. Kikuchi, Y. Ozawa and M. Abe, J. Organomet. Chem., 2019, 84, 8910.
- 172A. Cotic, S. Cerfontaine, L. D. Slep, B. Elias, L. Troian A. Cadranel, Phys. Chem. Chem. Phys. 2022, 24, 15121.
- 173G. Tapolsky, R. Duesing and T. J. Meyer, Inorg. Chem., 1990, 29, 2285.
- 174G. Tapolsky, R. Duesing and T. J. Meyer, J. Phys. Chem., 1991, 95, 1105.
- 175K. M. Omberg, J. R. Schoonover and T. J. Meyer, J. Phys. Chem. A, 1997, 101, 9531.
- 176T. P. Ortiz, J. A. Marshall, L. A. Emmert, J. Yang, W. Choi, A. L. Costello and J. A. Brozik, Inorg. Chem., 2004, 43, 132.
- 177M. W. George, J. J. Turner and J. R. Westwell, J. Chem. Soc. Dalton Trans., 1994, 2217.
- 178K. S. Schanze and T. J. Meyer, Inorg. Chem., 1985, 24, 2121.
- 179I. Ramírez-Wierzbicki, A. Cotic and A. Cadranel, ChemPhysChem, 2022, 23, 91058.
- 180A. Šrut and V. Krewald, J. Phys. Chem. A, 2023, 127, 9911.
- 181P. S. Oviedo, G. E. Pieslinger, L. M. Baraldo, A. Cadranel and D. M. Guldi, J. Phys. Chem. C, 2019, 123, 3285.
- 182J. R. Schoonover, A. P. Shreve, R. B. Dyer, R. L. Cleary, M. D. Ward and C. A. Bignozzi, Inorg. Chem., 1998, 37, 2598.
- 183K. Matsui, M. K. Nazeeruddin, R. Humphry-Baker, M. Grätzel and K. Kalyanasundaram, J. Phys. Chem., 1992, 96, 10587.
- 184K. Kalyanasundaram, M. Grätzel and M. K. Nazeeruddin, Inorg. Chem., 1992, 31, 5243.
- 185S.-C. Cheng, S.-L. Chan, D. L. Phillips and C.-C. Ko, Eur. J. Inorg. Chem., 2022, 22, e202200318 (1–6). DOI: 10.1002/ejic.202200318.
10.1002/ejic.202200318 Google Scholar
- 186D. W. Thompson, J. R. Schoonover, T. J. Meyer, R. Argazzi and C. A. Bignozzi, J. Chem. Soc. Dalton Trans., 1999, 2, 3729.
10.1039/a905783h Google Scholar
- 187C. Lambert, R. Wagener, J. H. Klein, G. Grelaud, M. Moos, A. Schmiedel, M. Holzapfel and T. Bruhn, Chem. Commun., 2014, 50, 11350.
- 188J. Henderson and C. P. Kubiak, Inorg. Chem., 2014, 53, 11298.
- 189J. Petersson, J. Henderson, A. Brown, L. Hammarström and C. P. Kubiak, J. Phys. Chem. C, 2015, 119, 4479.
- 190M. E. Smith, E. L. Flynn, M. A. Fox, A. Trottier, E. Wrede, D. S. Yufit, J. A. K. Howard, K. L. Ronayne, M. Towrie, A. W. Parker, F. Hartl and P. J. Low, Chem. Commun., 2008, 5845.
- 191Y. Morioka, T. Hisamitsu, H. Inoue, N. Yoshioka, H. Tomizawa and E. Miki, Bull. Chem. Soc. Jpn., 1998, 71, 837.
- 192C. Kreitner, M. Grabolle, U. Resch-Genger and K. Heinze, Inorg. Chem., 2014, 53, 12947.