Abstract
The applications of aluminum compounds to homogeneous and heterogeneous catalyses are reviewed. This article starts with a brief overview of the synthesis, reactivity, and Lewis acidity of catalytically relevant aluminum alkyls, aluminum hydrides, and aluminum complexes, including insertion of small molecules into Al–H and Al–C bonds. The following section focuses on alkylaluminoxanes with emphasis on the synthesis, structure, and reactivity of methylaluminoxane (MAO) and modified methylaluminoxanes (MMAO). Polymerization and oligomerization of alkenes are the subjects of the next section. Coverage includes the use of organoaluminum activators, such as triethylaluminum, MAO, and MMAO, for large-scale transition metal-catalyzed reactions including Ziegler–Natta and single-site metallocene-catalyzed polymerization of alkenes and selective alkene dimerization and trimerization processes. Also discussed are aluminum-catalyzed oligomerization of ethylene to long-chain terminal alkenes, polymerization of ethylene by cationic aluminum complexes, and the Lewis pair polymerization of conjugated polar alkenes catalyzed by frustrated Lewis pairs of aluminum. The ring-opening polymerization of epoxides, lactides, and lactones is then reviewed. Proposed monometallic and bimetallic mechanisms are discussed. This section also includes the aluminum-catalyzed copolymerization of epoxides with carbon dioxide to give polycarbonates and conversion of epoxides to cyclic carbonates. The next-to-last section of this article overviews the roles of aluminum in heterogeneous catalysis, and includes acid-catalyzed reactions on alumina, zeolites, and aluminophosphates. Transition metal catalysts supported on alumina are also discussed, both those where the transition metal is the active catalyst and bifunctional catalysts where both the alumina support and the transition metal contribute to the catalytic activity. This includes a brief discussion of large-scale commercial processes such as methanol to olefins technology and the hydrodesulfurization, hydrodenitrogenation, catalytic cracking, and reforming of petroleum. The final section briefly provides a few examples of the applications of aluminum catalysts to organic synthesis and fine chemicals production. Readers are referred to leading works that more adequately describe the extensive use of homogeneous and heterogeneous aluminum catalysts in these areas. One hundred four reviews and original works are cited.
References
- 1N. N. Greenwood and A. Earnshaw, ‘Chemistry of the Elements’ 2nd edition, Butterworth-Heinemann, Oxford, 1997, p. 1294.
- 2G. H. Robinson, in ‘Comprehensive Coordination Chemistry II’, eds J. A. McCleverty, T. J. Meyer and G. F. R. Parkin, Elsevier, Amsterdam, 2004, Chap. Aluminum and Gallium, p. 347.
- 3G. H. Robinson, ‘Coordination Chemistry of Aluminum’, VCH Publishers, New York, 1993.
- 4T. Mole and E. A. Jeffery, ‘Organoaluminum Compounds’, Elsevier, New York, 1972.
- 5J. J. Eisch, in ‘Comprehensive Organometallic Chemistry II’, eds E. W. Abel, F. G. A. Stone and G. Wilkinson, Elsevier, New York, 1995, Vol. 1, Chap. 10.
- 6J. J. Eisch, in ‘Comprehensive Organometallic Chemistry II’, eds E. W. Abel, F. G. A. Stone and G. Wilkinson, Elsevier, New York, 1995, Vol. 11, Chap. 6.
- 7M. R. Mason, in ‘Encyclopedia of Inorganic Chemistry’ 2nd edition, ed B. King, John Wiley & Sons, Inc, New York, 2005, Vol. 1, Chap. Aluminum: Organometallic Chemistry, p. 185.
- 8D. B. Malpass, in ‘Handbook of Transition Metal Polymerization Catalysts’, eds R. Hoff and R. T. Mathers, John Wiley & Sons, Inc, Hoboken, 2010, Chap. Commercially Available Metal Alkyls and Their Use in Polyolefin Catalysts, p. 1.
10.1002/9780470504437.ch1 Google Scholar
- 9S. Feng, G. R. Roof, and E. Y.-X. Chen, Organometallics, 2002, 21, 832.
- 10T. Belgardt, J. Storre, H. W. Roesky, M. Noltemeyer, and H. -G. Schmidt, Inorg. Chem., 1995, 34, 3821.
- 11J. Klosin, G. R. Roof, E. Y.-X. Chen, and K. A. Abboud, Organometallics, 2000, 19, 4684.
- 12M. Bochmann and M. J. Sarsfield, Organometallics, 1998, 17, 5908.
- 13J. P. Oliver, Adv. Organomet. Chem., 1977, 16, 111.
- 14S. Pasynkiewicz, Polyhedron, 1990, 9, 429.
- 15S. S. Reddy and S. Sivaram, Prog. Polym. Sci., 1995, 20, 309.
- 16J. -N. Pedeutour, K. Radhakrishnan, H. Cramail, and A. Deffieux, Macromol. Rapid Commun., 2001, 22, 1095.
- 17H. W. Roesky, M. G. Walawalkar, and R. Murugavel, Acc. Chem. Res., 2001, 34, 201.
- 18A. R. Barron, in ‘Metallocene-Based Polyolefins’, eds J. Scheirs and W. Kaminsky, John Wiley & Sons, Ltd, Chichester, 2000, Vol. 1, Chap. Alkylalumoxanes: Synthesis, Structure, and Reactivity, p. 33.
- 19D. Chakraborty and E. Y.-X. Chen, Organometallics, 2003, 22, 207.
- 20W. Uhl, Coord. Chem. Rev., 1997, 163, 1.
- 21M. R. Mason, J. M. Smith, S. G. Bott, and A. R. Barron, J. Am. Chem. Soc., 1993, 115, 4971.
- 22C. J. Harlan, M. R. Mason, and A. R. Barron, Organometallics, 1994, 13, 2957.
- 23C. J. Harlan, S. G. Bott, and A. R. Barron, J. Am. Chem. Soc., 1995, 117, 6465.
- 24M. Veith, Chem. Rev., 1990, 90, 3.
- 25W. Kaminsky, J. Chem. Soc., Dalton Trans., 1998, 1413.
- 26W. Kaminsky, A. Funck, and H. Hähnsen, Dalton Trans., 2009, 8803.
- 27W. Kaminsky, Macromolecules, 2012, 45, 3289.
- 28E. Y.-X. Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391.
- 29M. Linnolahti, J. R. Severn, and T. A. Pakkanen, Angew. Chem. Int. Ed., 2008, 47, 9279.
- 30E. Zurek and T. Ziegler, Prog. Polym. Sci., 2004, 29, 107.
- 31M. Ystenes, J. L. Eilersten, J. Liu, M. Ott, E. Rytter, and J. A. Stovneng, J. Polym. Sci., Part A: Polym. Chem., 2000, 38, 3106.
- 32See Akzo Nobel Product Data Sheets and patents cited therein; https://www.akzonobel.com/polymer/our_products/metal_alkyls/aluminum_alkyls/.
- 33G. Wilke, Angew. Chem. Int. Ed., 2003, 42, 5000.
- 34H. Sinn and W. Kaminsky, Adv. Organomet. Chem., 1980, 18, 99.
- 35G. G. Hlatky, Chem. Rev., 2000, 100, 1347.
- 36G. Fink, B. Steinmetz, J. Zechlin, C. Przybyla, and B. Tesche, Chem. Rev., 2000, 100, 1377.
- 37D. S. McGuinness, Chem. Rev., 2011, 111, 2321.
- 38D. S. McGuinness, N. W. Davies, J. Horne, and I. Ivanov, Organometallics, 2010, 29, 6111.
- 39J. T. Dixon, M. J. Green, F. M. Hess, and D. H. Morgan, J. Organomet. Chem., 2004, 689, 3641.
- 40G. W. Parshall and S. D. Ittel, 2nd edition, John Wiley & Sons, Inc, New York, 1992, Chap. Homogeneous Catalysis, p. 51, 180–181.
- 41H. Olivier-Bourbigou, F. Favre, A. Forestiere, and F. Hugues, in ‘Handbook of Green Chemistry’, eds P. T. Anastas and R. H. Crabtree, John Wiley & Sons, Inc, New York, 2009, Vol. 1, Chap. Ionic Liquids and Catalysis: the IFP Biphasic Difasol Process, p. 101.
- 42M. P. Coles and R. F. Jordan, J. Am. Chem. Soc., 1997, 119, 8125.
- 43G. Talarico and P. H. M. Budzelaar, Organometallics, 2002, 21, 34.
- 44V. C. Gibson and S. K. Spitzmesser, Chem. Rev., 2003, 103, 283.
- 45J. S. Kim, L. M.Wojcinski II, S. Liu, J. C. Sworen, and A. Sen, J. Am. Chem. Soc., 2000, 122, 5668.
- 46E.-X. Chen, Top. Curr. Chem., 2013, 334, 239.
- 47D. W. Stephan, Top. Curr. Chem., 2013, 332, 1.
- 48K. Owens and V. Kyllingstad, in ‘Kirk-Othmer Encyclopedia of Chemical Technology’ 4th edition, John Wiley & Sons, Inc, New York, 1993, Vol. 8, Chap. Elastomers, Synthetic Polyether, p. 1079.
- 49M. I. Childers, J. M. Longo, N. J. Van Zee, A. M. LaPointe, and G. W. Coates, Chem. Rev., 2014, 114, 8129.
- 50E. J. Vandenberg, in ‘Catalysis in Polymer Synthesis’, eds E. J. Vandenberg and J. C. Salamone, American Chemical Society, Washington, DC, 1992, Chap. Catalysis: A Key to Advances in Applied Polymer Science, p. 2, ACS Symposium Series 496,.
10.1021/bk-1992-0496.ch001 Google Scholar
- 51M. R. Mason and A. M. Perkins, J. Organomet. Chem., 2000, 599, 200.
- 52M. H. Chisholm, Pure Appl. Chem., 2010, 82, 1647.
- 53N. Ajellal, J. -F. Carpentier, C. Guillaume, S. M. Guillaume, M. Helou, V. Poirier, Y. Sarazin, and A. Trifonov, Dalton Trans., 2010, 39, 8363.
- 54R. H. Platel, L. M. Hodgson, and C. K. Williams, Polym. Rev., 2008, 48, 11.
- 55N. Ikpo, J. C. Flogeras, and F. M. Kerton, Dalton Trans., 2013, 42, 8998.
- 56D. J. Darensbourg, Chem. Rev., 2007, 107, 2388.
- 57M. North, R. Pasquale, and C. Young, Green Chem., 2010, 12, 1514.
- 58J. A. Castro-Osma, M. North, and X. Wu, Chem. Eur. J., 2014, 20, 15005.
- 59C. Beattie, M. North, P. Villuendas, and C. Young, J. Org. Chem., 2013, 78, 419.
- 60D. Tian, B. Liu, Q. Gan, H. Li, and D. J. Darensbourg, ACS Catal., 2012, 2, 2029.
- 61M. A. Fuchs, C. Altesleben, T. A. Zevaco, and E. Dinjus, Eur. J. Inorg. Chem., 2013, 4541.
- 62M. North and P. Villuendas, ChemCatChem, 2012, 4, 789.
- 63C. J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adan, E. Martin, and A. W. Kleij, J. Am. Chem. Soc., 2013, 135, 1228.
- 64C. Beattie and M. North, Chem. Eur. J., 2014, 20, 8182.
- 65M. Trueba and S. P. Trasatti, Eur. J. Inorg. Chem., 2005, 3393.
- 66C. N. Satterfield, ‘Heterogeneous Catalysis in Practice’, McGraw Hill, New York, 1980, p. 86.
- 67B. C. Gates, J. R. Katzer, and G. C. A. Schuit, ‘Chemistry of Catalytic Processes’, McGraw Hill, New York, 1979, p. 249.
- 68A. Pearson, in ‘Kirk-Othmer Encyclopedia of Chemical Technology’ 5th edition, John Wiley & Sons, Inc, New York, 2004, Vol. 2, Chap. Aluminum Oxide (Alumina), Activated, p. 391.
- 69C. N. Satterfield, ‘Heterogeneous Catalysis in Practice’, McGraw Hill, New York, 1980, Chap. 9.
- 70C. Leyva, M. S. Rana, F. Trejo, and J. Ancheyta, Ind. Eng. Chem. Res., 2007, 46, 7448.
- 71B. C. Gates, J. R. Katzer, and G. C. A. Schuit, ‘Chemistry of Catalytic Processes’, McGraw Hill, New York, 1979, Chap. 5.
- 72K. C. Waugh, Catal. Lett., 2012, 142, 1153.
- 73D. Lennon and S. F. Parker, Acc. Chem. Res., 2014, 47, 1220.
- 74M. E. Davis and R. F. Lobo, Chem. Mater., 1992, 4, 756.
- 75C. N. Satterfield, ‘Heterogeneous Catalysis in Practice’, McGraw Hill, New York, 1980, Chap. 7.
- 76B. C. Gates, J. R. Katzer, and G. C. A. Schuit, ‘Chemistry of Catalytic Processes’, McGraw Hill, New York, 1979, Chap. 1.
- 77P. A. Jacobs, M. Dusselier, and B. F. Sels, Angew. Chem. Int. Ed., 2014, 53, 8621.
- 78D. Gu and F. Schüth, Chem. Soc. Rev., 2014, 43, 313.
- 79C. Perego and R. Millini, Chem. Soc. Rev., 2013, 42, 3956.
- 80M. S. Holm, E. Taarning, K. Egeblad, and C. H. Christensen, Catal. Today, 2011, 168, 3.
- 81R. Murugavel, A. Voigt, M. G. Walawalkar, and H. W. Roesky, Chem. Rev., 1996, 96, 2205.
- 82G. Férey, M. Haouas, T. Loiseau, and F. Taulelle, Chem. Mater., 2014, 26, 299.
- 83R. Yadav and A. Sakthivel, Appl. Catal. A Gen., 2014, 481, 143.
- 84J. M. Thomas, J. C. Hernandez-Garrido, R. Rajab, and R. G. Bell, Phys. Chem. Chem. Phys., 2009, 11, 2799.
- 85M. Hartmann and L. Kevan, Chem. Rev., 1999, 99, 635.
- 86M. R. Mason, J. Cluster Sci., 1998, 9, 1.
- 87M. G. Walawalkar, H. G. Roesky, and R. Murugavel, Acc. Chem. Res., 1999, 32, 117.
- 88 I. Ojima (ed), ‘Catalytic Asymmetric Synthesis’ 2nd edition, Wiley-VCH, New York, 2000, Chap. 8.
10.1002/0471721506 Google Scholar
- 89H. Yamamoto, Tetrahedron, 2007, 63, 8377.
- 90P. Li and H. Yamamoto, Top. Organomet. Chem., 2011, 37, 161.
- 91M. B. Smith and J. March, ‘March's Advanced Organic Chemistry’ 5th edition, John Wiley & Sons, Inc, New York, 2001, p. 1199.
- 92G. W. Parshall and S. D. Ittel, ‘Homogeneous Catalysis’ 2nd edition, John Wiley & Sons, Inc, New York, 1992, p. 184.
- 93 R. A. Sheldon and H. van Bekkum (eds), ‘Fine Chemicals through Heterogeneous Catalysis’, Wiley-VCH, Weinheim, 2001.
- 94S. Dagorne and D. A. Atwood, Chem. Rev., 2008, 108, 4037.
- 95D. A. Atwood and B. C. Yearwood, J. Organomet. Chem., 2000, 600, 186.
- 96D. A. Atwood, Coord. Chem. Rev., 1998, 176, 407.
- 97M. Khandelwal, D. R. Powell, and R. J. Wehmschulte, Eur. J. Inorg. Chem., 2011, 521.
- 98T. Klis, D. R. Powell, L. Wojtas, and R. J. Wehmschulte, Organometallics, 2011, 30, 2563.
- 99M. Khandelwal and R. J. Wehmschulte, Angew. Chem. Int. Ed., 2012, 51, 7323.
- 100M. Khandelwal and R. J. Wehmschulte, J. Organomet. Chem., 2012, 696, 4179.
- 101J. Koller and R. G. Bergman, Chem. Commun., 2010, 46, 4577.
- 102J. Koller and R. G. Bergman, Organometallics, 2010, 29, 3350.
- 103L. A. Berben, Chem. Eur. J., 2015, 21, 2734.
- 104M. Alcamzo, Synlett, 2014, 25, 1519.