[FeFe]-Hydrogenase
Kevin D Swanson
Montana State University, Department of Chemistry and Biochemistry, Astrobiology Biogeocatalysis Research Center, Bozeman, USA, MT 59717
Search for more papers by this authorDanillo O Ortillo
Montana State University, Department of Chemistry and Biochemistry, Astrobiology Biogeocatalysis Research Center, Bozeman, USA, MT 59717
Search for more papers by this authorJoan B Broderick
Montana State University, Department of Chemistry and Biochemistry, Astrobiology Biogeocatalysis Research Center, Bozeman, USA, MT 59717
Search for more papers by this authorJohn W Peters
Montana State University, Department of Chemistry and Biochemistry, Astrobiology Biogeocatalysis Research Center, Bozeman, USA, MT 59717
Search for more papers by this authorKevin D Swanson
Montana State University, Department of Chemistry and Biochemistry, Astrobiology Biogeocatalysis Research Center, Bozeman, USA, MT 59717
Search for more papers by this authorDanillo O Ortillo
Montana State University, Department of Chemistry and Biochemistry, Astrobiology Biogeocatalysis Research Center, Bozeman, USA, MT 59717
Search for more papers by this authorJoan B Broderick
Montana State University, Department of Chemistry and Biochemistry, Astrobiology Biogeocatalysis Research Center, Bozeman, USA, MT 59717
Search for more papers by this authorJohn W Peters
Montana State University, Department of Chemistry and Biochemistry, Astrobiology Biogeocatalysis Research Center, Bozeman, USA, MT 59717
Search for more papers by this authorAbstract
[FeFe]-Hydrogenases are metalloenzymes that are key components of the energy metabolism in many microbial communities. Hydrogenases function either to couple hydrogen oxidation to energy yielding processes or in proton reduction as a means to generate oxidized electron carriers required in fermentation. These enzymes have complex metal cluster with unique nonprotein derived ligands and are of significant interest due to their complexity and novel features as well as in biotechnology in developing superior hydrogen production methods. Biochemical, structural, and spectroscopic studies have provided significant insights into how these enzymes work and how these complex metal clusters key to their function are synthesized. This short report highlights some of the key features of the enzymes that have been elucidated through many years and the recent progress on [FeFe]-hydrogenase maturation pathway and synthesis of the active site H cluster.
3D Structure
[FeFe]-hydrogenases from (a) Clostridium pasteurianum PDB code 3C8Y, (b) Desulfovibrio desulfuricans 1HFE, and (c) Chlamydomonas reinhardtii 3LX4 generated in PyMOL.1 The active site H-cluster domain, the FS4A–FS4B domain, FS2 domain, and FS4C domain and the small subunit from D. desulfuricans are depicted in blue, green, light blue, purple, and yellow, respectively. Inorganic cofactors are represented by spheres, and Fe, S, C, N, and O are colored as rust, yellow, gray, red, and blue, respectively.
References
- 1 PM Vignais and B Billoud, Chem Rev, 107, 4206–4272 (2007).
- 2 J Meyer, Cell Mol Life Sci, 64, 1063–1084 (2007).
- 3 PM Vignais and A Colbeau, Curr Issues Mol Biol, 6, 159–188 (2004).
- 4 PM Vignais, Results Probl Cell Differ, 45, 223–252 (2008).
- 5 MW Adams, Biochim Biophys Acta, 1020, 115–145 (1990).
- 6 MW Adams and LE Mortenson, Biochim Biophys Acta, 766, 51–61 (1984).
- 7 MW Adams, J Biol Chem, 262, 15054–15061 (1987).
- 8 PM Vignais, B Billoud and J Meyer, FEMS Microbiol Rev, 25, 455–501 (2001).
- 9 T Happe and A Kaminski, Eur J Biochem, 269, 1022–1032 (2002).
- 10 M Atta and J Meyer, Biochim Biophys Acta, 1476, 368–371 (2000).
- 11 MW Adams and LE Mortenson, J Biol Chem, 259, 7045–7055 (1984).
- 12 G Voordouw and S Brenner, Eur J Biochem, 148, 515–520 (1985).
- 13 G Voordouw, WR Hagen, KM Krusewolters, A Vanberkelarts and C Veeger, Eur J Biochem, 162, 31–36 (1987).
- 14 EC Hatchikian, V Magro, N Forget, Y Nicolet and JC Fontecilla-Camps, J Bacteriol, 181, 2947–2952 (1999).
- 15 EC Hatchikian, N Forget, VM Fernandez, R Williams and R Cammack, Eur J Biochem, 209, 357–365 (1992).
- 16 J Meyer and J Gagnon, Biochemistry, 30, 9697–9704 (1991).
- 17 M Calusinska, T Happe, B Joris and A Wilmotte, Microbiology, 156, 1575–1588 (2010).
- 18 DS Patil, JJG Moura, SH He, M Teixeira, BC Prickril, DV Dervartanian, HD Peck, J Legall and BH Huynh, J Biol Chem, 263, 18732–18738 (1988).
- 19 MF Verhagen, T O'rourke and MW Adams, Biochim Biophys Acta, 1412, 212–229 (1999).
- 20 B Soboh, D Linder and R Hedderich, Microbiology, 150, 2451–2463 (2004).
- 21 JM Kuchenreuther, CS Grady-Smith, AS Bingham, SJ George, SP Cramer and JR Swartz, PLoS ONE, 5, 1–7 (2010).
- 22 G Nakos and LE Mortenson, Biochim Biophys Acta, 227, 576–583 (1971).
- 23 JS Chen and LE Mortenson, Biochim Biophys Acta, 371, 283–298 (1974).
- 24 JW Peters, WN Lanzilotta, BJ Lemon and LC Seefeldt, Science, 282, 1853–1858 (1998).
- 25 JS Chen and DK Blanchard, Biochem Biophys Res Commun, 122, 9–16 (1984).
- 26 LE Mortenson, in F Sidney and P Lester (eds.) Methods in Enzymology, Vol. 53, New York, NY, Academic Press, pp. 286–96 (1978).
- 27 BH Huynh, MH Czechowski, HJ Kruger, DV Dervartanian, HD Peck and J Legall, Proc Natl Acad Sci U S A, 81, 3728–3732 (1984).
- 28 EC Hatchikian, N Forget, VM Fernandez, R Williams and R Cammack, Eur J Biochem, 209, 357–365 (1992).
- 29 PW King, MC Posewitz, ML Ghirardi and M Seibert, J Bacteriol, 188, 2163–2172 (2006).
- 30 AJ Pierik, WR Hagen, J Redeker, R Wolbert, M Boersma, M Verhagen, H Grande, C Veeger, P Mutsaers, R Sands and WR Dunham, Eur J Biochem, 209, 63–72 (1992).
- 31 M Demuez, L Cournac, O Guerrini, P Soucaille and L Girbal, FEMS Microbiol Lett, 275, 113–121 (2007).
- 32 G Von Abendroth, S Stripp, A Silakov, C Croux, P Soucaille, L Girbal and T Happe, Int J Hydrogen Energy, 33, 6076–6081 (2008).
- 33 SE Mcglynn, SS Ruebush, A Naumov, LE Nagy, A Dubini, PW King, JB Broderick, MC Posewitz and JW Peters, J Biol Inorg Chem, 12, 443–447 (2007).
- 34 G Fauque, H Peck, J Moura, B Huynh, Y Berlier, D Dervartanian, M Teixeira, A Przybyla, P Lespinat, I Moura and J LeGall, FEMS Microbiol Lett, 54, 299–344 (1988).
- 35 IC Zambrano, AT Kowal, LE Mortenson, MW Adams and MK Johnson, J Biol Chem, 264, 20974–20983 (1989).
- 36 C Kamp, A Silakov, M Winkler, EJ Reijerse, W Lubitz and T Happe, Biochim Biophys Acta, 1777, 410–416 (2008).
- 37 DS Patil, SH He, DV Dervartanian, J Legall, BH Huynh and HD Peck, FEBS Lett, 228, 85–88 (1988).
- 38 DS Patil, BH Huynh, SH He, HD Peck, DV Dervartanian and J Legall, J Am Chem Soc, 110, 8533–8534 (1988).
- 39 B Bennett, BJ Lemon and JW Peters, Biochemistry, 39, 7455–7460 (2000).
- 40 AT Kowal, MW Adams and MK Johnson, J Biol Chem, 264, 4342–4348 (1989).
- 41 J Telser, MJ Benecky, MW Adams, LE Mortenson and BM Hoffman, J Biol Chem, 261, 13536–13541 (1986).
- 42 SPJ Albracht, W Roseboom and EC Hatchikian, J Biol Inorg Chem, 11, 88–101 (2006).
- 43 G Wang, MJ Benecky, BH Huynh, JF Cline, MW Adams, LE Mortenson, BM Hoffman and E Munck, J Biol Chem, 259, 14328–14331 (1984).
- 44 H Thomann, M Bernardo and MW Adams, J Am Chem Soc, 113, 7044–7046 (1991).
- 45 A Silakov, EJ Reijerse, SPJ Albracht, EC Hatchikian and W Lubitz, J Am Chem Soc, 129, 11447–11458 (2007).
- 46 PJ Vandam, EJ Reijerse and WR Hagen, Eur J Biochem, 248, 355–361 (1997).
- 47 R Williams, R Cammack and EC Hatchikian, J Chem Soc, Faraday Trans, 89, 2869–2872 (1993).
- 48 AJ Pierik, M Hulstein, WR Hagen and SPJ Albracht, Eur J Biochem, 258, 572–578 (1998).
- 49 Y Nicolet, AL De Lacey, X Vernede, VM Fernandez, EC Hatchikian and JC Fontecilla-Camps, J Am Chem Soc, 123, 1596–1601 (2001).
- 50 TM Vanderspek, AF Arendsen, RP Happe, SY Yun, KA Bagley, DJ Stufkens, WR Hagen and SPJ Albracht, Eur J Biochem, 237, 629–634 (1996).
- 51 AL De Lacey, C Stadler, C Cavazza, EC Hatchikian and VM Fernandez, J Am Chem Soc, 122, 11232–11233 (2000).
- 52 ZJ Chen, BJ Lemon, S Huang, DJ Swartz, JW Peters and KA Bagley, Biochemistry, 41, 2036–2043 (2002).
- 53 W Roseboom, AL De Lacey, VM Fernandez, EC Hatchikian and SPJ Albracht, J Biol Inorg Chem, 11, 102–118 (2006).
- 54 CV Popescu and E Munck, J Am Chem Soc, 121, 7877–7884 (1999).
- 55 FM Rusnak, MW Adams, LE Mortenson and E Munck, J Biol Chem, 262, 38–41 (1987).
- 56 MY Darensbourg, EJ Lyon, X Zhao and IP Georgakaki, Proc Natl Acad Sci U S A, 100, 3683–3688 (2003).
- 57 BH Huynh, MH Czechowski, HJ Krüger, DV Dervartanian, HD Peck and J Legall, Proc Natl Acad Sci U S A, 81, 3728–3732 (1984).
- 58 WR Hagen, A Vanberkelarts, KM Krusewolters, WR Dunham and C Veeger, FEBS Lett, 201, 158–162 (1986).
- 59 RK Thauer, B Käufer, M Zähringer and K Jungermann, Eur J Biochem, 42, 447–452 (1974).
- 60 DL Erbes, RH Burris and WH Ormejohnson, Proc Natl Acad Sci U S A, 72, 4795–4799 (1975).
- 61 BJ Lemon and JW Peters, Biochemistry, 38, 12969–12973 (1999).
- 62 WR Hagen, A Vanberkelarts, KM Krusewolters, G Voordouw and C Veeger, FEBS Lett, 203, 59–63 (1986).
- 63 HJ Grande, WR Dunham, B Averill, C Vandijk and RH Sands, Eur J Biochem, 136, 201–207 (1983).
- 64 PJ Stephens, F Devlin, MC Mckenna, TV Morgan, M Czechowski, DV Dervartanian, HD Peck and J Legall, FEBS Lett, 180, 24–28 (1985).
- 65 AS Pereira, P Tavares, I Moura, JJG Moura and BH Huynh, J Am Chem Soc, 123, 2771–2782 (2001).
- 66 AL Delacey, C Stadler, VM Fernandez, EC Hatchikian, HJ Fan, SH Li and MB Hall, J Biol Inorg Chem, 7, 318–326 (2002).
- 67 Y Nicolet, C Piras, P Legrand, CE Hatchikian and JC Fontecilla-Camps, Struct Fold Des, 7, 13–23 (1999).
- 68 AS Pandey, TV Harris, LJ Giles, JW Peters and RK Szilagyi, J Am Chem Soc, 130, 4533–4540 (2008).
- 69 U Ryde, C Greco and L De Gioia, J Am Chem Soc, 132, 4512–4513 (2010).
- 70 A Silakov, B Wenk, E Reijerse and W Lubitz, Phys Chem Chem Phys, 11, 6592–6599 (2009).
- 71 DW Mulder, ES Boyd, R Sarma, RK Lange, JA Endrizzi, JB Broderick and JW Peters, Nature, 465, 248–251 (2010).
- 72 RA Laskowski, Bioinformatics, 23, 1824–1827 (2007).
- 73 JW Peters, Science, 283, 1853–1858 (1999).
- 74 DW Mulder, DO Ortillo, DJ Gardenghi, AV Naumov, SS Ruebush, RK Szilagyi, B Huynh, JB Broderick and JW Peters, Biochemistry, 48, 6240–6248 (2009).
- 75
EJ Lyon,
IP Georgakaki,
JH Reibenspies and
MY Darensbourg,
Angew Chem Int Ed,
38,
3178–3180
(1999).
10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 76 M Schmidt, SM Contakes and TB Rauchfuss, J Am Chem Soc, 121, 9736–9737 (1999).
- 77 A Le Cloirec, SP Best, S Borg, SC Davies, DJ Evans, DL Hughes and CJ Pickett, Chem Commun, 2285–2286 (1999).
- 78 H Reihlen, A Gruhl and G Hessling, Justus Liebigs Ann Chem, 472, 268–287 (1929).
- 79 D Seyferth, GB Womack, MK Gallagher, M Cowie, BW Hames, JP Fackler and AM Mazany, Organometallics, 6, 283–294 (1987).
- 80 D Seyferth, RS Henderson and LC Song, Organometallics, 1, 125–133 (1982).
- 81 D Seyferth, GB Womack, CM Archer and JC Dewan, Organometallics, 8, 430–442 (1989).
- 82 A Winter, L Zsolnai and G Huttner, Z Naturforsch, B: Anorg Chem, Org Chem, 37b, 1430–1436 (1982).
- 83 HJ Fan and MB Hall, J Am Chem Soc, 123, 3828–3829 (2001).
- 84 Z–P Liu and P Hu, J Chem Phys, 117, 8177–8180 (2002).
- 85 JA Ayllon, SF Sayers, S Sabo–Etienne, B Donnadieu, B Chaudret and E Clot, Organometallics, 18, 3981–3990 (1999).
- 86 D-H Lee, BP Patel, RH Crabtree, E Clot and O Eisenstein, Chem Commun, 297–298 (1999).
- 87 W Xu, AJ Lough and RH Morris, Inorg Chem, 35, 1549–1555 (1996).
- 88 XM Liu, SK Ibrahim, C Tard and CJ Pickett, Coord Chem Rev, 249, 1641–1652 (2005).
- 89 M Razavet, SJ Borg, SJ George, SP Best, SA Fairhurst and CJ Pickett, Chem Commun, 700–701 (2002).
- 90 AK Justice, TB Rauchfuss and SR Wilson, Angew Chem Int Ed, 46, 6152–6154 (2007).
- 91 T Liu and MY Darensbourg, J Am Chem Soc, 129, 7008–7009 (2007).
- 92 X Zhao, IP Georgakaki, ML Miller, JC Yarbrough and MY Darensbourg, J Am Chem Soc, 123, 9710–9711 (2001).
- 93 X Zhao, IP Georgakaki, ML Miller, R Mejia-Rodriguez, CY Chiang and MY Darensbourg, Inorg Chem, 41, 3917–3928 (2002).
- 94 BE Barton and TB Rauchfuss, Inorg Chem, 47, 2261–2263 (2008).
- 95 C Tard, XM Liu, SK Ibrahim, M Bruschi, L De Gioia, SC Davies, X Yang, LS Wang, G Sawers and CJ Pickett, Nature, 433, 610–613 (2005).
- 96 M Bruschi, C Greco, P Fantucci and L De Gioia, Inorg Chem, 47, 6056–6071 (2008).
- 97 AJ Cornish, K Gärtner, H Yang, JW Peters and EL Hegg, J Biol Chem, 286, 38341–38347 (2011).
- 98 JC Gordon and GJ Kubas, Organometallics, 29, 4682–4701 (2010).
- 99 Z Liu and P Hu, J Am Chem Soc, 124, 5175–5182 (2002).
- 100 MC Posewitz, PW King, SL Smolinski, LP Zhang, M Seibert and ML Ghirardi, J Biol Chem, 279, 25711–25720 (2004).
- 101 JK Rubach, X Brazzolotto, J Gaillard and M Fontecave, FEBS Lett, 579, 5055–5060 (2005).
- 102 X Brazzolotto, JK Rubach, J Gaillard, S Gambarelli, M Atta and M Fontecave, J Biol Chem, 281, 769–774 (2006).
- 103 SE Mcglynn, EM Shepard, MA Winslow, AV Naumov, KS Duschene, MC Posewitz, WE Broderick, JB Broderick and JW Peters, FEBS Lett, 582, 2183–2187 (2008).
- 104 JW Peters, RK Szilagyi, A Naumov and T Douglas, FEBS Lett, 580, 363–367 (2006).
- 105 EM Shepard, SE Mcglynn, AL Bueling, CS Grady-Smith, SJ George, MA Winslow, SP Cramer, JW Peters and JB Broderick, Proc Natl Acad Sci U S A, 107, 10448–10453 (2010).
- 106 EM Shepard, BR Duffus, SJ George, SE Mcglynn, MR Challand, KD Swanson, PL Roach, SP Cramer, JW Peters and JB Broderick, J Am Chem Soc, 132, 9247–9249 (2010).
- 107 I Czech, A Silakov, W Lubitz and T Happe, FEBS Lett, 584, 638–642 (2010).
- 108 RC Driesener, MR Challand, SE Mcglynn, EM Shepard, ES Boyd, JB Broderick, JW Peters and PL Roach, Angew Chem Int Ed, 49, 1687–1690 (2010).
- 109 JM Kuchenreuther, SJ George, CS Grady-Smith, SP Cramer and JR Swartz, PLoS ONE, 6, 1–8 (2011).
- 110 KD Swanson, BR Duffus, TE Beard, JW Peters and JB Broderick, Eur J Inorg Chem, 2011, 935–947 (2011).