Combined Density Functional Theory (DFT) and Electrostatics Study of the Proton Pumping Mechanism in Cytochrome C Oxidase
Alexei A. Stuchebrukhov
University of California, Davis, CA, USA
Search for more papers by this authorAlexei A. Stuchebrukhov
University of California, Davis, CA, USA
Search for more papers by this authorAbstract
Cytochrome c oxidase is a redox-driven proton pump which converts atmospheric oxygen to water and couples the oxygen reduction reaction to the creation of a membrane proton gradient. The structure of the enzyme has been solved; however, the mechanism of proton pumping is still poorly understood. Recent calculations from this group indicate that one of the histidine ligands of the enzyme's CuB center, His291, may play the role of the pumping element. Here, we discuss results of calculations that combined first principles density functional theory (DFT) and continuum electrostatics to evaluate the energetics of the key energy generating step—the transfer of the chemical proton to the binuclear center of the enzyme, where the hydroxyl group is converted to water, and the concerted expulsion of the proton from d-nitrogen of the His291 ligand of the CuB center.
References
- 1 M. Wikström, Curr. Opin. Struct. Biol., 1998, 8, 480.
- 2 R. B. Gennis, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 12747.
- 3 H. Michel, J. Behr, A. Harrenga, and A. Kannt, Annu. Rev. Biophys. Biomol. Struct., 1998, 27, 329.
- 4 G. T. Babcock and M. Wikström, Nature, 1992, 356, 301.
- 5 S. Ferguson-Miller and G. T. Babcock, Chem. Rev., 1996, 7, 2889.
- 6 M. Wikström, A. Jasaitis, C. Backgren, A. Puustinen, and M. I. Verkhovsky, Biochim. Biophys. Acta, 2000, 1459, 514.
- 7 D. Zaslavsky and R. B. Gennis, Biochim. Biophys. Acta, 2000, 1458, 164.
- 8 S. Yoshikawa, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, E. Yamashita, N. Inoue, M. Yao, M. J. Fei, C. P. Libeu, T. Mizushima, H. Yamaguchi, T. Tomizaki, and T. Tsukihara, Science, 1998, 280, 1723.
- 9 H. Michel, Biochemistry, 1999, 38, 15129.
- 10 M. Wikström, Biochemistry, 2000, 39, 3515.
- 11 S. Han, S. Takahashi, and D. L. Rousseau, J. Biol. Chem., 2000, 275, 1910.
- 12 D. M. Popovic and A. A. Stuchebrukhov, J. Am. Chem. Soc., 2004, 126, 1858.
- 13 D. M. Popovic and A. A. Stuchebrukhov, FEBS Lett., 2004, 566, 126.
- 14 D. M. Popovic, J. Quenneville, and A. A. Stuchebrukhov, J. Phys. Chem. B, 2005, 109, 3616.
- 15 X. Zheng, D. M. Medvedev, J. Swanson, and A. A. Stuchebrukhov, Biochim. Biophys. Acta, 2003, 1557, 99.
- 16 M. Tashiro and A. A. Stuchebrukhov, J. Phys. Chem. B, 2005, 109, 1015.
- 17 M. L. Verkhovskaya, A. Garcia-Horsman, A. Puustinen, J.-L. Rigaud, J. E. Morgan, M. I. Verkhovsky, and M. Wikström, Proc. Natl. Acad. Sci. U.S.A., 1997, 94, 10128.
- 18 P. Adelroth, M. S. Ek, D. M. Mitchell, R. B. Gennis, and P. Brzezinski, Biochemistry, 1997, 36, 13824.
- 19 M. Wikstrom, A. Jasaitis, C. Backgren, A. Puustinen, and M. I. Verkhovsky, Biochim. Biophys. Acta, 2000, 1459, 514.
- 20 D. M. Popovic and A. A. Stuchebrukhov, J. Phys. Chem. B, 2005, 109, 1999.
- 21 J. M. Mouesca, J. L. Chen, L. Noodleman, D. Bashford, and D. A. Case, J. Am. Chem. Soc., 1994, 116, 11898.
- 22 J. Li, C. L. Fischer, J. L. Chen, D. Bashford, and L. Noodleman, J. Phys. Chem., 1996, 96, 2855.
- 23 J. Li, M. R. Nelson, C. Y. Peng, D. Bashford, and L. Noodleman, J. Phys. Chem. A, 1998, 102, 6311.
- 24 J. Li, C. L. Fisher, R. Konecny, D. Bashford, and L. Noodleman, Inorg. Chem., 1999, 38, 929.
- 25 G. M. Ullmann, L. Noodleman, and D. A. Case, J. Biol. Inorg. Chem., 2002, 7, 632.
- 26 J. L. Chen, L. Noodleman, D. A. Case, and D. Bashford, J. Phys. Chem., 1994, 98, 11059.
- 27 B. Kallies and R. Mitzner, J. Phys. Chem. B, 1997, 101, 2959.
- 28 W. H. Richardson, C. Peng, D. Bashford, L. Noodleman, and D. A. Case, Int. J. Quant. Chem., 1997, 61, 207.
- 29 J. Quenneville, D. M. Popovic, and A. A. Stuchebrukhov, J. Phys. Chem. B, 2004, 108, 18383.
- 30 P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864.
- 31 K. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133.
- 32 Schrödinger LLC, Jaguar 5.5, Schrödinger LLC, Portland, OR, 1991–2003.
- 33 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 34 J. P. Perdew and M. Ernzerhof, J. Chem. Phys., 1996, 105, 9982.
- 35 M. R. A. Blomberg, P. E. M. Siegbahn, G. T. Babcock, and M. Wikström, J. Am. Chem. Soc., 2000, 122, 12848.
- 36 M. R. A. Blomberg, P. E. M. Siegbahn, G. T. Babcock, and M. Wikström, J. Inorg. Biochem., 2000, 80, 261.
- 37 P. E. M. Siegbahn, M. R. A. Blomberg, and M. L. Blomberg, J. Phys. Chem. B, 2003, 107, 10946.
- 38 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158.
- 39 V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, J. Chem. Phys., 2003, 119, 12129.
- 40 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
- 41 T. Clark, J. Chandrasekhar, G. W. Spitznagel, and Pv. R. Schleyer, J. Comput. Chem., 1983, 4, 294.
- 42 M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265.
- 43 R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., 1980, 72, 650.
- 44 A. D. McLean and S. G. Chandler, J. Chem. Phys., 1980, 72, 5639.
- 45 R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 1971, 54, 724.
- 46 W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys., 1972, 56, 2257.
- 47 W. J. Hehre and J. A. Pople, J. Chem. Phys., 1972, 56, 4233.
- 48 J. S. Binkley and J. A. Pople, J. Chem. Phys., 1977, 66, 879.
- 49 P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213.
- 50 M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople, J. Chem. Phys., 1982, 77, 3654.
- 51 M. T. Green, J. Am. Chem. Soc., 2000, 122, 9495.
- 52 M. T. Green, J. Am. Chem. Soc., 2001, 123, 9218.
- 53 D. J. Tannor, B. Marten, R. Marphy, R. A. Friesner, D. Sitkoff, A. Nicholls, M. G. W. A. I. Ringnalda, and B. Honig, J. Am. Chem. Soc., 1994, 116, 11875.
- 54 B. Marten, K. Kim, C. Cortis, R. A. Friesner, R. B. Murphy, M. N. Ringnalda, D. Sitkoff, and B. Honig, J. Phys. Chem., 1996, 100, 11775.
- 55 D. Makhov, D. M. Popovic, and A. A. Stuchebrukhov, J. Phys. Chem. B, 2006, 110, 12162.
- 56 C. M. Breneman and K. B. Wiberg, J. Comput. Chem., 1990, 11, 361.
- 57 D. Bashford and K. Gerwert, J. Mol. Biol., 1992, 224, 473.
- 58
D. Bashford, in
Scientific Computing in Object-Oriented Parallel Environments, eds.
Y. Ishikawa,
R. R. Oldehoeft,
J. V. W. Reynders, and
M. Tholburn,
Springer,
Berlin,
1997, p.
233.
10.1007/3-540-63827-X_66 Google Scholar
- 59 K. Sharp and B. Honig, Annu. Rev. Biophys. Biophys. Chem., 1990, 19, 301.
- 60 T. Simonson and D. Perahia, Proc. Natl. Acad. Sci. U.S.A., 1995, 92, 1082.
- 61 T. Simonson and C. L. Brooks, J. Am. Chem. Soc., 1996, 118, 8452.
- 62 A. Warshel and A. Papazyan, Curr. Opin. Struct. Biol., 1998, 8, 211.
- 63 A. D. MacKerell, D. Bashford, M. Bellot, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodholm, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem., 1998, 102, 3586.
- 64 D. M. Popovic, S. D. Zaric, B. Rabenstein, and E. W. Knapp, J. Am. Chem. Soc., 2001, 123, 6040.
- 65 D. M. Popovic, A. Zmiric, S. D. Zaric, and E. W. Knapp, J. Am. Chem. Soc., 2002, 124, 3775.
- 66 P. Vagedes, B. Rabenstein, J. Åqvist, J. Marelius, and E. W. Knapp, J. Am. Chem. Soc., 2000, 122, 12254.
- 67 B. Rabenstein and E. W. Knapp, Biophys. J., 2001, 80, 1141.
- 68 J. Quenneville, D. M. Popovic, and A. A. Stuchebrukhov, Biochim. Biophys., 2006, Acta, 1035.
- 69 R. Sugitani, E. S. Medvedev, and A. A. Stuchebrukhov, Biophys. Biochim. Acta, 2008, 1777, 1129.