From Gene Mapping to Gene Editing, A Guide from the Arabidopsis Research
Mohamed El-Soda
Department of Genetics, Cairo University, Giza, Egypt
Search for more papers by this authorMohamed S. Sarhan
Eurac Research—Institute for Mummy Studies, Bolzano, Italy
Search for more papers by this authorMohamed El-Soda
Department of Genetics, Cairo University, Giza, Egypt
Search for more papers by this authorMohamed S. Sarhan
Eurac Research—Institute for Mummy Studies, Bolzano, Italy
Search for more papers by this authorAbstract
Gene mapping aims to identify the causal genetic factors underlying any trait of interest. To map those genetic factors, three main pre-requisites are required, i.e. traits measured on quantitative scales, segregating populations, and linkage maps. Quantitative traits are controlled by many genes and can be collected by screening segregating populations, which either can be immortal populations or large collections of natural homozygous inbred accessions. Genetic polymorphisms within each of those population types can be investigated using advanced sequencing technologies or polymerase chain reaction (PCR)-based molecular markers that can be grouped and presented as linkage maps, which represent chromosomes. The mapping process itself can be achieved by traditional quantitative trait loci (QTL) mapping or association mapping, which accelerate mutant and gene discovery. Traditionally, the identified mutants or genes can be used to generate new plants with improved or desirable features through crossing or selection that are laborious and time-consuming. An effective, precise, and rapid alternative to target and modify the identified mutants or genes is through gene-editing technologies. The three most common genome-editing technologies are Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) nuclease. Experience gained with the model plant Arabidopsis thaliana will be the focus of this article.
References
- Abdullah, Jiang, Z., Hong, X. et al. (2020). CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. Synthetic and Systems Biotechnology 5 (4): 277–292.
- Adhikari, S., Saha, S., Biswas, A. et al. (2017). Application of molecular markers in plant genome analysis: a review. The Nucleus 60 (3): 283–297.
- Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications 9 (1): 1911.
- Alonso-Blanco, C., Aarts, M.G.M., Bentsink, L. et al. (2009). What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21 (7): 1877–1896.
- Alonso, J.M. and Ecker, J.R. (2006). Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nature Reviews Genetics 7 (7): 524–536.
- Anzalone, A.V., Randolph, P.B., Davis, J.R. et al. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576 (7785): 149–157.
- Arabidopsis-Genome-Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 (6814): 796–815.
- Armario Najera, V., Twyman, R.M., Christou, P. et al. (2019). Applications of multiplex genome editing in higher plants. Current Opinion in Biotechnology 59: 93–102.
- Arrones, A., Vilanova, S., Plazas, M. et al. (2020). The dawn of the age of multi-parent MAGIC populations in plant breeding: novel powerful next-generation resources for genetic analysis and selection of recombinant elite material. Biology 9 (8): 229.
- Arya, S.S., Mahto, B.K., Ramkumar, T.R. et al. (2020). Sharpening gene editing toolbox in Arabidopsis for plants. Journal of Plant Biochemistry and Biotechnology 29 (4): 769–784.
- Asimit, J. and Zeggini, E. (2010). Rare variant association analysis methods for complex traits. Annual Review of Genetics 44 (1): 293–308.
- Assmann, S.M. (2013). Natural variation in abiotic stress and climate change responses in Arabidopsis: implications for twenty-first-century agriculture. International Journal of Plant Sciences 174 (1): 3–26.
- Atwell, S., Huang, Y.S., Vilhjalmsson, B.J. et al. (2010). Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465 (7298): 627–631.
- Awlia, M., Nigro, A., Fajkus, J. et al. (2016). High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Frontiers in Plant Science 7: 1414.
- Balasubramanian, S., Schwartz, C., Singh, A. et al. (2009). QTL mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines. PLoS One 4 (2): e4318.
- Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological 57 (1): 289–300.
10.1111/j.2517-6161.1995.tb02031.x Google Scholar
- Bossdorf, O., Arcuri, D., Richards, C. et al. (2010). Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evolutionary Ecology 24 (3): 541–553.
- Botstein, D., White, R.L., Skolnick, M. et al. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32 (3): 314–331.
- Brachi, B., Faure, N., Horton, M. et al. (2010). Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genetics 6 (5): e1000940.
- Brock, M.T., Rubin, M.J., DellaPenna, D. et al. (2020). A nested association mapping panel in Arabidopsis thaliana for mapping and characterizing genetic architecture. G3: Genes|Genomes|Genetics 10 (10): 3701–3708.
- Burghardt, L.T., Young, N.D., and Tiffin, P. (2017). A guide to genome-wide association mapping in plants. Current Protocols in Plant Biology 2 (1): 22–38.
- Christian, M., Qi, Y., Zhang, Y. et al. (2013). Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3: Genes|Genomes|Genetics 3 (10): 1697–1705.
- Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B. et al. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142 (1–2): 169–196.
- Consortium, G. (2016). 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166 (2): 481–491.
- Dear, P.H. (2005). Genome Mapping. John Wiley & Sons, Ltd: Chichester.
10.1038/npg.els.0005353 Google Scholar
- Dekkers, J.C.M. and Hospital, F. (2002). The use of molecular genetics in the improvement of agricultural populations. Nature Reviews Genetics 3 (1): 22–32.
- Doerge, R.W. (2002). Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews Genetics 3 (1): 43–52.
- Duran, C., Edwards, D., and Batley, J. (2009). Genetic maps and the use of synteny. In: Plant Genomics: Methods and Protocols (ed. J.P. Gustafson, P. Langridge and D.J. Somers). Totowa: Humana Press.
10.1007/978-1-59745-427-8_3 Google Scholar
- Durvasula, A., Fulgione, A., Gutaker, R.M. et al. (2017). African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 114 (20): 5213–5218.
- El-Lithy, M.E., Bentsink, L., Hanhart, C.J. et al. (2006). New Arabidopsis recombinant inbred line populations genotyped using SNPWave and their use for mapping flowering-time quantitative trait loci. Genetics 172 (3): 1867–1876.
- El-Soda, M., Kruijer, W., Malosetti, M. et al. (2015). Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought. Plant, Cell & Environment 38 (3): 585–599.
- El-Soda, M., Malosetti, M., Zwaan, B.J. et al. (2014). Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends in Plant Science 9 (6): 390–398.
- El-Soda, M., Neris Moreira, C., Goredema-Matongera, N. et al. (2019). QTL and candidate genes associated with leaf anion concentrations in response to phosphate supply in Arabidopsis thaliana. BMC Plant Biology 19 (1): 410.
- Elshire, R.J., Glaubitz, J.C., Sun, Q. et al. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6 (5): e19379.
- Eshed, Y. and Zamir, D. (1995). An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141 (3): 1147–1162.
- Exposito-Alonso, M., Vasseur, F., Ding, W. et al. (2018). Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana. Nature Ecology & Evolution 2 (2): 352–358.
- Feng, T. and Zhu, X. (2012). Detecting rare variants. In: Statistical Human Genetics: Methods and Protocols (ed. R.C. Elston, J.M. Satagopan and S. Sun). Totowa: Humana Press.
10.1007/978-1-61779-555-8_24 Google Scholar
- Flint-Garcia, S.A., Thornsberry, J.M., and Buckler, E.S.t. (2003). Structure of linkage disequilibrium in plants. Annual Review of Plant Biology 54: 357–374.
- Flood, P.J., Kruijer, W., Schnabel, S.K. et al. (2016). Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods 12 (1): 14.
- Fournier-Level, A., Korte, A., Cooper, M.D. et al. (2011). A map of local adaptation in Arabidopsis thaliana. Science 334 (6052): 86–89.
- Gallego-Bartolomé, J., Gardiner, J., Liu, W. et al. (2018). Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proceedings of the National Academy of Sciences 115 (9): E2125–E2134.
- Goodwin, S., McPherson, J.D., and McCombie, W.R. (2016). Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics 17 (6): 333–351.
- Granier, C., Aguirrezabal, L., Chenu, K. et al. (2006). PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytologist 169 (3): 623–635.
- Guilinger, J.P., Thompson, D.B., and Liu, D.R. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology 32 (6): 577–582.
- Gupta, P.K., Kulwal, P.L., and Jaiswal, V. (2019). Association mapping in plants in the post-GWAS genomics era. In: Advances in Genetics (ed. D. Kumar). Academic Press.
- Hagenblad, J., Tang, C., Molitor, J. et al. (2004). Haplotype structure and phenotypic associations in the chromosomal regions surrounding two Arabidopsis thaliana flowering time loci. Genetics 168 (3): 1627–1638.
- Haldane, J.B.S. (1919). The probable errors of calculated linkage values, and the most accurate method of determining gametic from certain zygotic series. Journal of Genetics 8 (4): 291–297.
10.1007/BF02983270 Google Scholar
- Haley, C.S. and Knott, S.A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69 (4): 315–324.
- Hancock, A.M., Brachi, B., Faure, N. et al. (2011). Adaptation to climate across the Arabidopsis thaliana genome. Science 334 (6052): 83–86.
- Hassan, M.M., Yuan, G., Chen, J.-G. et al. (2020). Prime editing technology and its prospects for future applications in plant biology research. BioDesign Research 2020: 9350905.
10.34133/2020/9350905 Google Scholar
- He, C., Holme, J., and Anthony, J. (2014). SNP genotyping: the KASP assay. In: Crop Breeding: Methods and Protocols (ed. D. Fleury and R. Whitford). New York: Springer New York.
10.1007/978-1-4939-0446-4_7 Google Scholar
- Heather, J.M. and Chain, B. (2016). The sequence of sequencers: the history of sequencing DNA. Genomics 107 (1): 1–8.
- Hillers, K.J. (2004). Crossover interference. Current Biology 14 (24): R1036–R1037.
- Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6 (2): 65–70.
- Horvath, P. and Barrangou, R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science 327 (5962): 167–170.
- Huang, X.Q., Paulo, M.J., Boer, M. et al. (2011). Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proceedings of the National Academy of Sciences 108 (11): 4488–4493.
- Ibrahim, A.K., Zhang, L., Niyitanga, S. et al. (2020). Principles and approaches of association mapping in plant breeding. Tropical Plant Biology 13 (3): 212–224.
- Jaccoud, D., Peng, K., Feinstein, D. et al. (2001). Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29 (4): e25.
- James, G.V., Patel, V., Nordström, K.J.V. et al. (2013). User guide for mapping-by-sequencing in Arabidopsis. Genome Biology 14 (6): R61–R61.
- Jansen, J. and Van Ooijen, J.W. (2013). Determination of linkage groups. In: Genetic Mapping in Experimental Populations (ed. J. Jansen and J.W. Ooijen). Cambridge: Cambridge University Press.
- Jansen, R.C. (1992). A general mixture model for mapping quantitative trait loci by using molecular markers. Theoretical and Applied Genetics 85 (2): 252–260.
- Jansen, R.C. (1994). Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 138 (3): 871–881.
- Jansen, R.C. (2003). Quantitative trait loci in inbred lines. In: Handbook of Statistical Genetics (ed. D.J. Balding, M. Bishop and C. Cannings). Chichester: Wiley.
- Jansen, R.C. and Stam, P. (1994). High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136 (4): 1447–1455.
- Jiang, Y.-Y., Chai, Y.-P., Lu, M.-H. et al. (2020). Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biology 21 (1): 257.
- Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337 (6096): 816–821.
- Johannes, F., Colot, V., and Jansen, R.C. (2008). Epigenome dynamics: a quantitative genetics perspective. Nature Reviews Genetics 9 (11): 883–890.
- Johannes, F., Porcher, E., Teixeira, F.K. et al. (2009). Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genetics 5 (6): e1000530.
- Johansson, K.S.L., El-Soda, M., Pagel, E. et al. (2020). Genetic controls of short- and long-term stomatal CO2 responses in Arabidopsis thaliana. Annals of Botany 126 (1): 179–190.
- Joosen, R.V.L., Arends, D., Willems, L.A.J. et al. (2012). Visualizing the genetic landscape of Arabidopsis seed performance. Plant Physiology 158 (2): 570–589.
- Joosen, R.V.L., Kodde, J., Willems, L.A.J. et al. (2010). GERMINATOR: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. The Plant Journal 62 (1): 148–159.
- Juenger, T.E. (2013). Natural variation and genetic constraints on drought tolerance. Current Opinion in Plant Biology 16 (3): 274–281.
- Jupe, F., Rivkin, A.C., Michael, T.P. et al. (2019). The complex architecture and epigenomic impact of plant T-DNA insertions. PLoS Genetics 15 (1): e1007819.
- Kawakatsu, T., Huang, S.-s.C., Jupe, F. et al. (2016). Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166 (2): 492–505.
- Keurentjes, J.J.B., Bentsink, L., Alonso-Blanco, C. et al. (2007). Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175 (2): 891.
- Kim, S., Plagnol, V., Hu, T.T. et al. (2007). Recombination and linkage disequilibrium in Arabidopsis thaliana. Nature Genetics 39 (9): 1151–1155.
- Knapp, S.J. (1991). Using molecular markers to map multiple quantitative trait loci: models for backcross, recombinant inbred, and doubled haploid progeny. Theoretical and Applied Genetics 81 (3): 333–338.
- Konieczny, A. and Ausubel, F.M. (1993). A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal 4 (2): 403–410.
- Koornneef, M., Alonso-Blanco, C., and Vreugdenhil, D. (2004). Naturally occuring genetic variation in Arabidopsis thaliana. Annual Review of Plant Biology 55 (1): 141–172.
- Korte, A. and Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9 (1): 29.
- Kosambi, D. (1944). The estimation of map distances from recombination values. Annals of Eugenics 12: 172–175.
- Kover, P.X., Valdar, W., Trakalo, J. et al. (2009). A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genetics 5 (7): e1000551.
- Kulwal, P.L. and Singh, R. (2021). Association mapping in plants. In: Crop Breeding: Genetic Improvement Methods (ed. P. Tripodi). Springer US: New York.
10.1007/978-1-0716-1201-9_8 Google Scholar
- Lander, E. and Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121 (1): 185–199.
- Li, G. and Quiros, C.F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics 103 (2): 455–461.
- Li, J.-F., Norville, J.E., Aach, J. et al. (2013). Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31 (8): 688–691.
- Li, Y., Huang, Y., Bergelson, J. et al. (2010). Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 107 (49): 21199–21204.
- Long, Q., Rabanal, F.A., Meng, D. et al. (2013). Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nature Genetics 45 (8): 884–890.
- Lowder, L., Malzahn, A., and Qi, Y. (2016). Rapid evolution of manifold CRISPR systems for plant genome editing. Frontiers in Plant Science 7: 1683.
- Mackay, T.F.C., Stone, E.A., and Ayroles, J.F. (2009). The genetics of quantitative traits: challenges and prospects. Nature Reviews Genetics 10 (8): 565–577.
- Mao, Y., Botella, J.R., Liu, Y. et al. (2019). Gene editing in plants: progress and challenges. National Science Review 6 (3): 421–437.
- Mauricio, R. (2001). Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nature Reviews Genetics 2 (5): 370–381.
- McCallum, C.M., Comai, L., Greene, E.A. et al. (2000). Targeted screening for induced mutations. Nature Biotechnology 18 (4): 455–457.
- Metje-Sprink, J., Menz, J., Modrzejewski, D. et al. (2019). DNA-free genome editing: past, present and future. Frontiers in Plant Science 9: 1957.
- Miki, D., Zinta, G., Zhang, W. et al. (2021). CRISPR/Cas9-based genome editing toolbox for Arabidopsis thaliana. In: Arabidopsis Protocols (ed. J.J. Sanchez-Serrano and J. Salinas). New York: Springer US.
10.1007/978-1-0716-0880-7_5 Google Scholar
- Mirouze, M. and Paszkowski, J. (2011). Epigenetic contribution to stress adaptation in plants. Current Opinion in Plant Biology 14 (3): 267–274.
- Mondini, L., Noorani, A., and Pagnotta, M.A. (2009). Assessing plant genetic diversity by molecular tools. Diversity 1 (1): 19–35.
- Moon, S.B., Kim, D.Y., Ko, J.-H. et al. (2019). Recent advances in the CRISPR genome editing tool set. Experimental & Molecular Medicine 51 (11): 1–11.
- Muller, H.J. (1916). The mechanism of crossing-over. The American Naturalist 50 (592): 193–221.
10.1086/279534 Google Scholar
- Nadeem, M.A., Nawaz, M.A., Shahid, M.Q. et al. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment 32 (2): 261–285.
- O'Rourke, J.A. (2014). Genetic and Physical Map Correlation. Wiley: Chichester.
10.1002/9780470015902.a0000819.pub3 Google Scholar
- Osakabe, K., Osakabe, Y., and Toki, S. (2010). Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proceedings of the National Academy of Sciences 107 (26): 12034–12039.
- Papikian, A., Liu, W., Gallego-Bartolomé, J. et al. (2019). Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nature Communications 10 (1): 729.
- Rafalski, J.A. (2010). Association genetics in crop improvement. Current Opinion in Plant Biology 13 (2): 174–180.
- Reinders, J., Wulff, B.B.H., Mirouze, M. et al. (2009). Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes & Development 23 (8): 939–950.
- Rowan, B.A., Patel, V., Weigel, D. et al. (2015). Rapid and inexpensive whole-genome genotyping-by-sequencing for crossover localization and fine-scale genetic mapping. G3: Genes|Genomes|Genetics 5 (3): 385–398.
- Salomé, P.A., Bomblies, K., Fitz, J. et al. (2012). The recombination landscape in Arabidopsis thaliana F2 populations. Heredity 108 (4): 447–455.
- Salse, J., Piégu, B., Cooke, R. et al. (2002). Synteny between Arabidopsis thaliana and rice at the genome level: a tool to identify conservation in the ongoing rice genome sequencing project. Nucleic Acids Research 30 (11): 2316–2328.
- Sanchez-Bermejo, E. and Balasubramanian, S. (2016). Natural variation involving deletion alleles of FRIGIDA modulate temperature-sensitive flowering responses in Arabidopsis thaliana. Plant, Cell & Environment 39 (6): 1353–1365.
- Savolainen, O., Lascoux, M., and Merilä, J. (2013). Ecological genomics of local adaptation. Nature Reviews Genetics 14 (11): 807–820.
- Schneeberger, K., Ossowski, S., Lanz, C. et al. (2009). SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature Methods 6 (8): 550–551.
- Schranz, M.E., Lysak, M.A., and Mitchell-Olds, T. (2006). The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends in Plant Science 11 (11): 535–542.
- Scott, M.F., Ladejobi, O., Amer, S. et al. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity 125 (6): 396–416.
- Serpico, D. (2020). Beyond quantitative and qualitative traits: three telling cases in the life sciences. Biology and Philosophy 35 (3): 34.
- Seymour, D.K., Filiault, D.L., Henry, I.M. et al. (2012). Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping. Proceedings of the National Academy of Sciences 109 (11): 4227–4232.
- Shilo, S., Tripathi, P., Melamed-Bessudo, C. et al. (2017). T-DNA-genome junctions form early after infection and are influenced by the chromatin state of the host genome. PLoS Genetics 13 (7): e1006875.
- Simon, M., Loudet, O., Durand, S. et al. (2008). Quantitative trait loci mapping in five new large recombinant inbred line populations of Arabidopsis thaliana genotyped with consensus single-nucleotide polymorphism markers. Genetics 178 (4): 2253–2264.
- Skirycz, A., Vandenbroucke, K., Clauw, P. et al. (2011). Survival and growth of Arabidopsis plants given limited water are not equal. Nature Biotechnology 29 (3): 212–214.
- Sterken, R., Kiekens, R., Boruc, J. et al. (2012). Combined linkage and association mapping reveals CYCD5;1 as a quantitative trait gene for endoreduplication in Arabidopsis. Proceedings of the National Academy of Sciences 109 (12): 4678–4683.
- Tanksley, S.D., Grandillo, S., Fulton, T.M. et al. (1996). Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theoretical and Applied Genetics 92 (2): 213–224.
- Tautz, D. and Schlötterer, C. (1994). Simple sequences. Current Opinion in Genetics & Development 4 (6): 832–837.
- Tisné, S., Serrand, Y., Bach, L. et al. (2013). Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity. The Plant Journal 74 (3): 534–544.
- Tsai, S.Q., Wyvekens, N., Khayter, C. et al. (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology 32 (6): 569–576.
- Tuinstra, M.R., Ejeta, G., and Goldsbrough, P.B. (1997). Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theoretical and Applied Genetics 95 (5–6): 1005–1011.
- Tzfira, T., Li, J., Lacroix, B.t. et al. (2004). Agrobacterium T-DNA integration: molecules and models. Trends in Genetics 20 (8): 375–383.
- Van Eck, J. (2018). Genome editing and plant transformation of solanaceous food crops. Current Opinion in Biotechnology 49: 35–41.
- Veillet, F., Kermarrec, M.-P., Chauvin, L. et al. (2020). Prime editing is achievable in the tetraploid potato, but needs improvement. bioRxiv, 10.1101/2020.06.18.159111
- Vinod, K.K. (2011). Kosambi and the genetic mapping function. Resonance 16 (6): 540–550.
10.1007/s12045-011-0060-x Google Scholar
- Visscher, P.M., Hill, W.G., and Wray, N.R. (2008). Heritability in the genomics era – concepts and misconceptions. Nature Reviews Genetics 9 (4): 255–266.
- Vos, P., Hogers, R., Bleeker, M. et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23 (21): 4407–4414.
- Wada, N., Ueta, R., Osakabe, Y. et al. (2020). Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biology 20 (1): 234.
- Wang, H., Russa, M.L., and Qi, L.S. (2016). CRISPR/Cas9 in genome editing and beyond. Annual Review of Biochemistry 85 (1): 227–264.
- Webb, A., Cottage, A., Wood, T. et al. (2016). A SNP-based consensus genetic map for synteny-based trait targeting in faba bean (Vicia faba L.). Plant Biotechnology Journal 14 (1): 177–185.
- Weigel, D. (2012). Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiology 158 (1): 2–22.
- Weigel, D. and Mott, R. (2009). The 1001 genomes project for Arabidopsis thaliana. Genome Biology 10 (5): 107.
- Williams, J.G.K., Kubelik, A.R., Livak, K.J. et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18 (22): 6531–6535.
- Xing, H.-L., Dong, L., Wang, Z.-P. et al. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology 14 (1): 327.
- Xu, R., Li, J., Liu, X. et al. (2020). Development of plant prime-editing systems for precise genome editing. Plant Communications 1 (3): 100043.
- Yang, J., Zhu, J., and Williams, R.W. (2007). Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23 (12): 1527–1536.
- Yang, W., Feng, H., Zhang, X. et al. (2020). Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Molecular Plant 13 (2): 187–214.
- Zeng, Z.B. (1994). Precision mapping of quantitative trait loci. Genetics 136 (4): 1457–1468.
- Zhang, F., Maeder, M.L., Unger-Wallace, E. et al. (2010). High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences 107 (26): 12028–12033.
- Zhang, Y.Y., Fischer, M., Colot, V. et al. (2013). Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytologist 197 (1): 314–322.
- Zhu, C., Gore, M., Buckler, E.S. et al. (2008). Status and prospects of association mapping in plants. The Plant Genome 1 (1): 5–20.
- Zhu, H., Kim, D.-J., Baek, J.-M. et al. (2003). Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Plant Physiology 131 (3): 1018–1026.
- Zietkiewicz, E., Rafalski, A., and Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20 (2): 176–183.
Citing Literature
Browse other articles of this reference work: