An Integrated Plant Architecture: Roots, Shoots, and Everything in Between
Jitka Klimešová
Institute of Botany, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
Charles University, Praha, Czech Republic
Search for more papers by this authorJitka Klimešová
Institute of Botany, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
Charles University, Praha, Czech Republic
Search for more papers by this authorAbstract
Classical models of tree architecture are based on the development of aboveground stem branching in an ideal tree from early ontogeny to the first flowering. Such attempts hinder the usage of architectural traits for understanding plant ecology, especially for herbs. In this article, the author discusses belowground plant architecture, especially the root system, and its contribution to whole plant architecture during ontogeny and after damage.
References
- Aeschimann, D. and Bocquet, G. (1980). Allorhizie et homorhizie, une reconsidération des définitions et de la terminologie. Candollea 35: 19–35.
- Arber, A. (1941). The interpretation of leaf and root in the angiosperms. Biological Review 16: 81–105.
10.1111/j.1469-185X.1941.tb01096.x Google Scholar
- Arber, A. (1946). Goethe's botany. The metamorphosis of plants (1790) and Tobler's Ode to Nature (1782) with an introduction and translations. Chronica Botanica 10: 67–124.
- Averill, K.M. and DiTommaso, A. (2007). Wild parsnip (Pastinaca sativa): a troublesome species of increasing concern. Weed Technology 21: 279–287.
- Baggio Savio, L.E., Astarita, L.V., and Santarem, E.R. (2012). Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. Plant Cell, Tissue and Organ Culture, Journal of Plant Biotechnology 108: 465–472.
- Bareeba, F.B., Odwongo, W.O., and Mugerwa, J.S. (1992). The potential of Russian comfrey (Symphytum officinale) as an animal feedstuff in Uganda. In: The Complementarity of Feed Resources for Animal Production in Africa. Proceedings of the Joint Feed Resources Networks Workshop held in Gaborone, Botswana 4–8 March 1991. (eds. J.E.S. Stares, A.N. Said and J.A. Kategile). Addis Ababa, Ethiopia: African Feeds Research Network. ILCA (International Livestock Centre for Africa).
- Barlow, P.W. (1994). The origin, diversity and biology of shoot-borne roots. In: Biology of Adventitious Root Formation (eds. T.D. Davis and B.E. Haissig), pp. 1–23. New York/London: Plenum Press.
10.1007/978-1-4757-9492-2_1 Google Scholar
- Barton, M.K. (1998). Cell type specification and self renewal in the vegetative shoot apical meristem. Current Opinion in Plant Biology 1: 37–42.
- Barton, M.K. and Poethig, R.S. (1993). Formation of shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119: 823–831.
- Bartušková, A., Filartiga, A.L., Herben, T., and Klimešová, J. (2021). Comparative analysis of root sprouting in temperate herbs: anatomical correlates and environmental predictors. Annals of Botany. doi: 10.1093/aob/mcab030.
10.1093/aob/mcab030 Google Scholar
- Bartušková, A., Malíková, L., and Klimešová, J. (2017). Check-list of root-sprouters in the Czech flora: mapping the gaps in our knowledge. Folia Geobotanica 52: 337–343.
- Bell, A.D. (1991). Plant Form. An Illustrated Guide to Flowering Plant Morphology. Oxford University Press.
- Bennett, J.R. and Mathews, S. (2006). Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. American Journal of Botany 93: 1039–1051.
- Blodgett, F.H. (1923). The embryo of Lemna. American Journal of Botany 10: 336–342.
10.1002/j.1537-2197.1923.tb05733.x Google Scholar
- Chomicki, G., Coiro, M., and Renner, S.S. (2017). Evolution and ecology of plant architecture: integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies. Annals of Botany 120: 855–891.
- Cornille, A., Giraud, T., Smulders, M.J.M. et al. (2013). The domestication and evolutionary ecology of apples. Trends in Genetics 30: 57–65.
- Cusset, G. (1994). A simple classification of the complex parts of vascular plants. Botanical Journal of Linnean Society 114: 229–242.
- Daday, H., Peak, J.W., Launders, T. et al. (1968). Seasonal growth of an Australian cultivar of creeping-rooted lucerne (Medicago sativa). Australian Journal of Experimental Agriculture and Animal Husbandry 8: 548–554.
10.1071/EA9680548 Google Scholar
- Del Tredici, P. (2001). Sprouting in temperate trees: a morphological and ecological review. Botanical Review 67: 121–140.
- Duchoslavová, J. and Jansa, J. (2018). The direction of carbon and nitrogen fluxes between ramets in Agrostis stolonifera changes during ontogeny under simulated competition for light. Journal of Experimental Botany 69: 2149–2158.
- Esau, K. (1965). Plant Anatomy. New York: Wiley.
- Fiala, V. and Jolivet, E. (1980). The aptitude of roots of witloof chicory for chicon production studied by their carbohydrate composition. Scientia Horticulturae (Amst) 13: 125–134.
- Figura, T., Tylova, E., Soch, J. et al. (2019). In vitro axenic germination and cultivation of mixotrophic Pyroloideae (Ericaceae) and their post-germination ontogenetic development. Annals of Botany 123: 625–639.
- Foster, A.S. and Giffort, E.M. (1959). Comparative Morphology of Vascular Plants. San Francisco: W.H. Freeman and Company.
- Galtier, J. (1999). Contrasting diversity of branching patterns in early ferns and early seed plants. In: The Evolution of Plant Architecture (eds. M.H. Kurmann and A.R. Hemsley), 51–64. Royal Botanical Gardens: Kew.
- Goebel, K. (1923). Organographie der Pflanzen III. Jena: Verlag von Gustav Fisher.
- Grebenstein, C., Kos, S.P., de Jong, T.J. et al. (2013). Morphological markers for the detection of introgression from cultivated into wild carrot (Daucus carota L.) reveal dominant domestication traits. Plant Biology 15: 531–540.
- Groff, P.A. and Kaplan, D.R. (1988). The relation of root systems to shoot systems in vascular plants. Botanical Review 67: 387–422.
- Guarino, C., Casoria, P., and Menale, B. (2000). Cultivation and use of Isatis tinctoria L. (Brassicaceae) in Southern Italy. Economic Botany 54: 395–400.
- Guerrero-Campo, J., Palacio, S., Perez-Rontome, C., and Montserrat-Marti, G. (2006). Effect of root system morphology on root-sprouting and shoot-rooting abilities in 123 plant species from eroded lands in north-east Spain. Annals of Botany 98: 439–447.
- Hallé, F., Oldeman, R.A.A., and Tomlinson, P.B. (1978). Tropical Trees and Forests: An Architectural Analysis. Berlin: Springer.
10.1007/978-3-642-81190-6 Google Scholar
- Harrison, J., Möller, M., Langdale, J. et al. (2005). The role of KNOX genes in the evolution of morphological novelty in Streptocarpus. Plant Cell 17: 430–443.
- Hauser, T.P. and Shim, S.I. (2007). Survival and flowering of hybrids between cultivated and wild carrots (Daucus carota) in Danish grasslands. Environmental Biosafety Research 6: 237–247.
- Herben, T. and Klimešová, J. (2020). Evolution of clonal growth forms in angiosperms. New Phytologist 225: 999–1010.
- Herben, T., Chytrý, M., and Klimešová, J. (2016). A quest for species-level indicator values for disturbance. Journal of Vegetation Science 27: 628–636.
- Herben, T., Klimešová, J., and Chytrý, M. (2018). Effects of disturbance frequency and severity on plant traits: an assessment across a temperate flora. Functional Ecology 32: 799–808.
- Herrington, M.G., Gadek, P.A., and Edwards, W. (2005). The potential predation induced somatic embryogenesis in storage cotyledons. Oikos 111: 215–220.
- Jeník, J. (1978). Roots and root systems in tropical trees: morphologic and ecologic aspects. In: Tropical Trees as Living System (eds. P.B. Tomlinson and M.H. Zimmermann), 323–349. Cambridge University Press.
- Jong, K. and Burtt, B.L. (1975). The evolution of morphological novelty examplified in the growth patterns of some Gesneriaceae. New Phytologist 75: 297–311.
- Kerstetter, R. and Hake, S. (1997). Shoot meristem formation in vegetative development. Plant Cell 9: 1001–1010.
- Kita, Y. and Kato, M. (2005). Seedling developmental anatomy of an undescribed Malaccotristicha species (Podostemaceae, subfamily Tristichoideae) with implications for body plant evolution. Plant Systematics and Evolution 254: 221–232.
- Klimeš, L. and Klimešová, J. (1999). Root sprouting in Rumex acetosella under different nutrient levels. Plant Ecology 141: 33–39.
- Klimešová, J. (2007). Root-sprouting in myco-heterotrophic plants: prepackaged symbioses or overcoming meristem limitation? New Phytologist 173: 8–10.
- Klimešová, J. (2018). Temperate herbs: an architectural analysis, 276. Praha: Academia.
- Klimešová, J. and Klimeš, L. (2006). CLO-PLA3–the database of clonal and bud bank traits of Central European flora. http://clopla.butbn.cas.cz (accessed 25 February 2021).
- Klimešová, J. and Klimeš, L. (2007). Bud banks and their role in vegetative regeneration – a literature review and proposal for simple classification and assessment. Perspectives in Plant Ecology Evolution and Systematics 8: 115–129.
- Klimešová, J. and Martíková, J. (2004). Intermediate growth forms as a model for the study of plant clonality functioning: an example with root sprouters. Evolutionary Ecology 18: 669–681.
- Klimešová, J, Nobis, M.P., and Herben, T. (2015). Senescence, ageing and death of the whole plant: Morphological prerequisites and constraints of plant immortality. New Phytologist 206: 14–18.
- Klimešová, J., Martínková, J., Pausas, J.G. et al. (2019). Handbook of standardized protocols for collecting plant modularity traits. Perspectives in Ecology, Evolution, and Systematics 40: 125485.
- Klimešová, J., Herben, T., and Martínková, J. (2017). Disturbance is an important factor in the evolution and distribution of root-sprouting species. Evolutionary Ecology 31: 387–399.
- Klimešová, J., Sosnová, M., and Martínková, J. (2007). Life-history variation in the short-lived herb Rorippa palustris: effects of germination date and injury timing. Plant Ecology 189: 237–246.
- Kollmann, J., Brink-Jensen, K., Frandsen, S.I., and Hansen, M.K. (2011). Uprooting and burial of invasive alien plants: a new tool in coastal restoration? Restoration Ecology 19: 371–378.
- Kondo, K., Segawa, M., and Nehira, K. (1978). Anatomical studies of seeds and seedlings of some Utricularia. Brittonia 30: 89–95.
- Kutschera, L. and Lichtenegger, E. (1982). Wurzelatlas mitteleuropäischer Grünlandpflanzen. Stuttgart: Gustav Fischer Verlag.
- Kutschera, L. and Lichtenegger, E. (1992). Wurzelatlas mitteleuropäischer Grünlandpflanzen. Stuttgart: Gustav Fischer Verlag.
- Lawson, D.M., Hemmat, M., and Weeden, N.F. (1995). The use of molecular markers to analyze the inheritance of morphological and developmental traits in apple. Journal of American Society for Horticultural Sciences 120: 532–537.
- Link, G.K.K. and Eggers, V. (1946). Mode, site, and time of initiation of hypocotyledonary bud primordia in Linum usitatissimum L. Botanical Gazette 107: 441–454.
- Lukasiewitz, A. (1962). Morfologizno-rozwojowe typy bylin (Morphologic development types of perennials). The Poznan Society of Friends of Science. Department of Mathematical and Natural Sciences, Publication of the Section of Biology 27: 1–398.
- Magnussen, L.S. and Hauser, T.P. (2007). Hybrids between cultivated and wild carrots in natural populations in Denmark. Heredity 99: 185–192.
- Malíková, L., Šmilauer, P., and Klimešová, J. (2010). Occurrence of adventitious sprouting in short-lived monocarpic herbs: field study on 22 weedy species. Annals of Botany 105: 905–912.
- Martínková, J. and Klimešová, J. (2016). Enforced clonality: shall it be taken into account? Frontiers in Plant Science 7: 1–10.
- Martínková, J., Šmilauer, P., Mihulka, S. et al. (2016). The effect of injury on whole-plant senescence: an experiment with two root-sprouting Barbarea species. Annals of Botany 117: 667–679.
- Martínková, J., Klimeš, A., and Klimešová, J. (2018). No evidence for nutrient foraging in root-sprouting clonal plants. Basic and Applied Ecology 28: 27–36.
- Martínková, J., Klimeš, A., and Klimešová, J. (2020a). Young clonal and non-clonal herbs differ in growth strategy but not in aboveground biomass compensation after disturbance. Oecologia: 1–11.
- Martínková, J., Klimeš, A., Puy, J., and Klimešová, J. (2020b). Response of clonal versus non-clonal herbs to disturbance: different strategies revealed. Perspectives in Plant Ecology, Evolution and Systematics 44: 125529.
- McKey, D., Elias, M., Pujo, B., and Duputie, A. (2010). The evolutionary ecology of clonally propagated domesticated plants. New Phytologist 186: 318–332.
- Miller, A.J. and Gross, B.L. (2011). From forest to field: perennial fruit crop domestication. American Journal of Botany 98: 1389–1414.
- Morley, F.H.W. and Heinrichs, D.H. (1960). Breeding for creeping root in Alfalfa (Medicago media PERS.). Canadian Journal of Plant Science 40: 424–433.
10.4141/cjps60-055 Google Scholar
- Nickrent, D.L., Der, J.P., and Anderson, F.E. (2005). Discovery of the photosynthetic relatives of the “Maltese mushroom” Cynomorium. BMC Evolutionary Biology 5: 38.
- Ott, J.P., Klimešová, J., and Hartnett, D.C. (2019). The ecology and significance of below-ground bud banks in plants. Annals of Botany 123: 1099–1118.
- Panzaru, G. and Gille, E. (2001). Some aspects regarding the cultivation of Hypericum perforatum species under conditions of Central Moldavia. Romanian Agricultural Research 16: 57–63.
- Pardini, E.A., Drake, J.M., Chase, J.M., and Knight, T.M. (2009). Complex population dynamics and control of the invasive biennial Alliaria petiolata (garlic mustard). Ecological Applications 19: 387–397.
- Pausas, J.G., Lamont, B.B., Paula, S. et al. (2018). Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist 217: 1435–1448.
- C.T. Philbrick (ed.) (1997). Podostemaceae. Aquatic Botany 57: 1–303.
- Quamme, H.A., Hampson, C.R., and Brownlee, R.T. (1998). Use of planting depth and budding height to modify vigour control of Ottawa 3 apple rootstock. Canadian Journal of Plant Science 78: 353–355.
- Raju, M.V.S., Coupland, R.T., and Steeves, T.A. (1966). On the occurrence of root buds on perennial plants in Saskatchewan. Canadian Journal of Botany 44: 33–37.
- Rauh, W. (1937). Die Bildung von Hypokotyl- und Wurzelsprossen und ihre Bedeutung für die Wuchsformen der Pflanzen. Nova Acta Leopoldina 4: 395–553.
- Rutishauser, R. (1995). Developmental patterns of leaves in Podostemaceae compared with more typical flowering plants: saltational evolution and fuzzy morphology. Canadian Journal of Botany 73: 1305–1317.
- Rutishauser, R. and Isler, B. (2001). Developmental genetics and morphological evolution of flowering plants, especially bladderworts (Utricularia): fuzzy arberian morphology complements classical morphology. Annales of Botany 88: 1173–1202.
- Rutishauser, R. and Moline, P. (2005). Evo-devo and the search for homology (“sameness”) in biological systems. Theory in Biosciences 124: 213–241.
- Salzman, A.G. (1985). Habitat selection in a clonal plant. Science 228: 603–604.
- Serebriakova, T.I. (1977). On the basic “architectural models” of herbaceous perennials and the modes of their transformation. Biulleten MOIP. Biologia 82 (5): 113–128.
- Šmilauerová, M. and Šmilauer, P. (2007). What youngsters say about adults: seedling roots reflect clonal traits of adult plants. Journal of Ecology 95: 406–413.
- Sosnová, M., Herben, T., Martínková, J. et al. (2014). To resprout or not to resprout? Modeling population dynamics of a root-sprouting monocarpic plant under various disturbance regimes. Plant Ecology 215: 1245–1254.
- Stuefer, J.F., de Kroon, H., and During, H.J. (1996). Exploiation of environmental heterogeneity by spatial division oflabour in clonal plant. Functional Ecology 10: 328–334.
- Těšitel, J. (2016). Functional biology of parasitic plants: a review. Plant Ecology and Evolution 149: 5–20.
- Velenovský, J. (1907). Vergleichende Morphologie der Pflanzen, Teil II. Praha: Fr. Řivnáč Verlag.
- Walters, S.A. and Wahle, E.A. (2010). Horseradish production in Illinois. HortTechnology 20: 267–276.
- Wang, T., Hu, J.T., Wang, R.Q. et al. (2018). Tolerance and resistance facilitate the invasion success of Alternanthera philoxeroides in disturbed habitats: A reconsideration of the disturbance hypothesis in the light of phenotypic variation. Environmental and Experimental Botany 153: 135–142.
- Weiser, M., Koubek, T., and Herben, T. (2016). Root foraging performance and life-history traits. Frontiers in Plant Science 7: 779.
- Wijnheijmer, E.H.M., Brandenburg, W.A., and Ter Borg, S.J. (1989). Interactions between wild and cultivated carrots (Daucus carota L.) in the Netherlands. Euphytica 40: 147–154.
- Wittrock, V.B. (1884). Ueber Wurzelsprossen bei kräutigarten Gewächsen, mit besonderer Rücksicht auf ihre verschiedene biologische Bedeutung. Botanisches Centralblatt 17 (8): 227–232; 17(9): 257–264.
Citing Literature
Browse other articles of this reference work: