3 Biosynthesis of Cyanogenic Glycosides, Glucosinolates and Non-Protein Amino Acids
Dirk Selmar
Institute of Plant Biology, Technical University Braunschweig, Braunschweig, Germany
Search for more papers by this authorDirk Selmar
Institute of Plant Biology, Technical University Braunschweig, Braunschweig, Germany
Search for more papers by this authorAbstract
When cyanogenic plants are injured, hydrogen cyanide (HCN) is liberated. This cyanogenesis is initiated by any decompartmentation, resulting in the contact of cyanogenic glycosides and the corresponding β-glucosidases. The related hydrolysis produces unstable hydroxynitriles which decay to HCN and a carbonyl. This treatise reviews the various plant biological, biochemical and molecular facets of cyanogenic glucosides; special emphasis is put on the new and actual aspects of their biosynthesis. In the past, this complex conversion of amino acids via aldoximes to cyanogenic glucosides was described as so-called channelled biosynthesis. Yet, later on, it was shown that this multi-step biosynthesis is performed by only two multi-functional cytochrome P450 enzymes, which are located in the ER. Subsequently, the resulting unstable hydroxynitriles are glucosylated by soluble cytosolic glucosyltransferase. Just recently, the ‘missing link’ between the cytochrome-dependent synthesis and the final glucosylation step could be elucidated in Birger Møller's lab by the discovery of a metabolon that comprises all biosynthetic steps. Thus, the old concept of ‘channelled biosynthesis’ does apply again.
Glucosinolates, which resemble cyanogenic compounds in many aspects, are characterized by the liberation of mustard oils, a complex mixture of isothiocyanates, thiocyanates and related nitriles. Degradation takes place when tissues of glucosinolate-containing plants are damaged and cells are destroyed. Glucosinolates and their degradation products are important factors in plant defence against herbivores, as well as against pathogens. The biosynthesis of glucosinolates includes three independent phases: first, the chain elongation of amino acids; second, conversion of the precursor amino acid via aldoximes into glucosinolates; and, finally, further modifications of the resulting glucosinolates. In the past, for a long time the formation of aldoximes from amino acids was discussed controversially and three different pathways had been proposed, one involving flavin-containing mono-oxygenases, another one membrane-bound peroxidases and a third one in which – similar to the biosynthesis of cyanogenic glucosides – the aldoximes are produced by cytochrome P450s. Meanwhile, due to the tremendous progress by molecular biology and molecular genetics, it was shown that only the P450-related synthesis is relevant. This review emphasizes on the biochemical and molecular aspects of glucosinolate biosynthesis, but does also outline the mustard oil formation, its ecological relevance and important nutritional aspects.
Apart from the amino acids present in proteins, numerous other amino acids occur in plants. Whereas some of them are known to be intermediates in various pathways of primary metabolism, others are regarded as typical secondary metabolites with the corresponding ecological functions. In contrast to the comprehensive knowledge of cyanogenic glucosides and glucosinolates, far less is known about the biology and biochemistry of non-protein amino acids (NPAAs). The corresponding part of this chapter reviews the recent knowledge on the various aspects of NPAAs, including their biosynthesis and metabolism and their putative ecological significance.
References
- Adewusi, S.R.A. (1990) Turnover of dhurrin in green Sorghum seedlings. Plant Physiol., 94, 1219–24.
- Akanji, A.O. (1994) Cassava intake and the risk of diabetes in humans. Acta Horticulture, 375, 349–59.
- Ambrosone, C.B., McCann, S.E., Freudenheim, J.L., Marshall, J.R., Zhang, Y. and Shields, P.G. (2004) Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J. Nutr., 134, 1134–8.
- Andersen, M.D., Busk, P.K., Svendsen, I. and Møller, B.L. (2000) Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. J. Biol. Chem., 275, 1966–75.
- Andreasson, E., Jorgensen, L.B., Hoglund, A.S., Rask, L. and Meijer, J. (2001) Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus . Plant Physiol., 127, 1750–63.
- Andreasson, E. and Jørgenson, L.B. (2003) Localization of plant myrosinases and glucosinolates, in Recent Advances in Phytochemistry: Integrative Phytochemistry: From Ethnobotany to Molecular Ecology (ed. J.T. Romeo). Pergamon, Oxford, pp. 79–99.
- Aschhoff, H.J. and Pfeil, U. (1970) Auftrennung and Charakterisierung der Isoenzyme von d-Hydroxynitril-Lyase (D-Oxynitrilase) aus Mandeln. Hoppe-Seyler's Z. Physiol. Chem., 351, 818–26.
- Bak, S., Nielsen, H.L. and Halkier, B.A. (1998) The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acids to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates. Plant Mol. Biol., 38, 725–34.
- Bak, S., Olsen, C.E., Petersen, B.L., Møller, B.L. and Halkier, B.A. (1999) Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor . Plant J., 20, 663–71.
- Bak, S., Paquette, S.M., Morant, M., Morant, A.V., Saito, Sh., Bjarnholt, N., Zagrobelny, M., Jørgensen, K., Osmani, S., Simonsen, H.T., Sanchez Perez, R., Bordier van Heeswijck, T., Jørgensen, B. and Møller, B.L. (2006) Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem. Rev., 5, 309–29.
- Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W. and Feyereisen, R. (2001) CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis . Plant Cell, 13, 101–11.
- Ballhorn, D.J., Lieberei, R. and Ganzhorn, J.U. (2005) Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: the importance of quantitative data. J. Chem. Ecol., 31(7), 1445–73.
- Barnes, H.J., Arlotto, M.P. and Waterman, M.R. (1991) Expression and enzymatic activity of recombinant cytochrome P450 17-α-hydroxylase in Escherichia coli . Proc. Natl. Acad. Sci. USA, 88, 5597–601.
- Barrett, T., Suresh, C.G., Tolley, S.P., Sodson, E.J. and Hughes, M.A. (1995) The crystal structure of cyanogenic β-glucosidase from white clover, a family 1-glycosyl hydrolase. Structure, 3, 951–1000.
- Bartyzel, I., Pelczar, K. and Paszkowski, A. (2003) Functioning of the γ-aminobutyrate pathway in wheat seedlings affected by osmotic stress. Biol. Plantarum, 47, 221–5.
- Becker, W. and Pfeil, E. (1966) Über das Flavinenzym d-Oxynitrilase. Biochem. Z., 346, 301–22.
- Bell, E.A. (1980) Nonprotein amino acids in plants, in Encyclopaedia of Plant Physiology, Vol. 8, Secondary Plant Products. Springer Verlag, Heidelberg, pp. 401–32.
- Bennett, R.N., Dawson, G.W., Hick, A.J. and Wallsgrove, R.M. (1995b) Glucosinolate biosynthesis: further characterization of the aldoxime-forming microsomal monooxygenases in oilseed rape leaves. Plant Physiol., 109, 299–305.
- Bennett, R.N., Donald, A.M., Dawson, G.W., Hick, A.J. and Wallsgrove, R.M. (1993) Aldoxime-forming microsomal enzyme systems involved in the biosynthesis of glucosinolates in oilseed rape leaves. Plant Physiol., 102, 1307–12.
- Bennett, R.N., Ludwig-Müller, J., Kiddle, G., Hilgenberg, W. and Wallsgrove, R.M. (1995a) Developmental regulation of aldoxime formation in seedlings and mature plants of Chinese cabbage (Brassica campestris sp. Pekinensis) and oilseed rape (Brassica napus): glucosinolate and IAA biosynthetic enzymes. Planta, 114, 239–44.
- Berger, M.G., Sprengart, M.L., Kusnan, M. and Fock, H.P. (1986) Ammonia fixation via glutamine synthetase and glutamate synthase in the crassulacean acid metabolism plant, Cissus quadrangularis . Plant Physiol., 81, 356–60.
- Bernardi, R., Finiguerra, M., Rossi, A.A. and Palmieri, S. (2003) Isolation and biochemical characterization of a basic myrosinase from ripe Crambe abyssinica seeds, highly specific for epi-progoitrin. J. Agric. Food Chem., 51, 2737–44.
- Bernays, E.A., Chapman, R.F., Leather, E.M., McCaffery, A.R. and Modder, W.W.D. (1977) The relationship of Zonocerus variegatus with cassava. Bull. Entomol. Res., 67, 391–404.
- Beuve, N., Rispail, N., Laine, P., Cliquet, J.B., Ourry, A. and Deunff, E.L. (2004) Putative role of γ-aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant Cell Environ., 27, 1035–46.
- Bialy, Z., Oleszek, W., Lewis, J. and Fenwick, G.R. (1990) Allelopathic potential of glucosinolates (mustard oil glycosides) and their degradation products against wheat. Plant Soil, 129, 277–82.
- Blumenthal, G.S., Hendrickson, H.R., Abrol, Y.P. and Conn, E.E. (1968) Cyanide metabolism in higher plants. J. Biol. Chem., 243, 5302–7.
- Bokanga, M. (1994) Distribution of cyanogenic potential in cassava germplasm. Acta Horticulture, 375, 117–23.
- Bokanga, M., Ekanayake, I.J., Dixon, A.G.O. and Porto, M.C.M. (1994) Genotype-environment interactions for cyanogenic potential in cassava. Acta Horticulture, 375, 131–9.
- Bones, A.M. and Rossiter, J.T. (1996) The myrosinase–glucosinolate system, its organisation and biochemistry. Physiol. Plantarum, 97, 194–208.
- Bones, A.M. and Rossiter, J.T. (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 67, 1053–67.
- Bouché, N., Fait, A., Zik, M. and Fromm, H. (2004) The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis . Plant Mol. Biol., 55, 315–25.
- Bough, W.A. and Gander, J.E. (1971) Exogenous l-tyrosine metabolism and dhurrin turnover in Sorghum seedlings. Phytochemistry, 10, 67–77.
- Bové, C. and Conn, E.E. (1961) Metabolism of aromatic compounds in higher plants. II. Purification and properties of the oxynitrilase of Sorghum vulgare . J. Biol. Chem., 236, 207–10.
- Bown, A.W. and Shelp, B.J. (1997) The metabolism and functions of γ-aminobutyric acid. Plant Physiology, 115, 1–5.
- Braekman, L.D., Daloze, D. and Pasteels, J.M. (1982) Cyanogenic and other glucosides in a Neo-Guinean bug. Leptococris isolata. Biochem. Syst., 10, 97–130.
- Brauner-Osborne, H., Nielson, B., Stensbol, T.B., Johanson, T.N. and Skjaerbaek, N. (1997) Molecular pharmacology of 4-substituted glutamic acid analogues at ionotropic and metatropic excitatory amino acid receptors. Eur. J. Pharmacol., 335, R1–3.
- Breitkreuz, K.E., Allan, W.L., Van Cauwenberghe, O.R., Jakobs, C., Talibi, D., Andre, B. and Shelp, B.J. (2003) A novel gamma-hydroxybutyrate dehydrogenase – identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency. J. Biol. Chem, 278, 41552–6.
-
Brinker, A.M. and
Seigler, D.S.
(1992)
Determination of cyanide and cyanogenic glycosides, in
Modern Methods of Plant Analysis New Series, Vol.
13, Plant Toxin Analysis (eds
H.F. Linskens and
J.F. Jackson).
Springer,
Berlin, pp.
359–81.
10.1007/978-3-662-02783-7_15 Google Scholar
- Brown, E.G. and Mohamad, J. (1990) Biosynthesis of lathyrine: a novel synthase activity. Phytochemistry, 29, 3117–22.
- Brown, E.G. and Mohamad, J. (1994) Partial purification and properties of lathyrine synthase. Phytochemistry, 36, 285–7.
- Brown, E.G. and Turan, Y. (1995) Pyrimidine metabolism and secondary product formation: biogenesis of albizziine, 4-hydroxyhomoarginine and 2,3-diaminopropanoic acid. Phytochemistry, 40, 763–71.
- Brown, P.D. and Morra, M.J. (1995) Glucosinolate-containing plant tissues as bioherbicides. J Agric. Food Chem., 43, 3070–74.
- Burmeister, W.P., Cottaz, S., Driguez, H., Iori, R., Palmieri, S. and Henrissat, B. (1997) The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure, 5, 663–75.
- Burmeister, W.P., Cottaz, S., Rollin, P. and Vasella, A.H.B. (2000) High resolution X-ray cristallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J. Biol. Chem., 275, 39385–93.
- Burow, M., Bergner, A., Gershenzon, J. and Wittstock, U. (2007) Glucosinolate hydrolysis in Lepidium sativum – identification of the thiocyanate-forming protein. Plant Mol. Biol., 63, 49–61.
- Burow, M., Muller, R., Gershenzon, J. and Wittstock, U. (2006) Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis . J. Chem. Ecol., 32, 2333–49.
- Burow, M., Zhang, Z.-Y., Ober, J.A., Lambrix, V.M., Wittstock, U., Gershenzon, J. and Kliebenstein, D.J. (2008) ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis . Phytochemistry, 69, 663–71.
- Butler, G.W., Baily, R.W. and Kennedy, L.D. (1965) Studies on the glucosidase ‘linamarase’. Phytochemistry, 4, 369–81.
- Bytof, G., Knopp, S.-E., Schieberle, P., Teutsch, I. and Selmar, D. (2005) Influence of processing on the generation of γ-aminobutyric acid in green coffee beans. Eur. Food Res. Technol., 220, 245–50.
- Castric, P.A., Farnden, K.F. and Conn, E.E. (1972) Cyanide metabolism in higher plants. 5. The formation of asparagine from β-cyanoalanine. Arch. Biochem. Biophys., 152, 62–9.
- Chadchawan, S., Bishop, J., Thangstad, O.P., Bones, A.M., Mitchell-Olds, T. and Bradley, D. (1993) Arabidopsis cDNA sequence encoding myrosinase. Plant Physiol., 103, 671–2.
- Chassagne, D. and Crouzet, J. (1998) A cyanogenic glycoside from Passiflora edulis fruits. Phytochemistry, 49, 757–9.
- Chen, S. and Andreasson, E. (2001) Update on glucosinolate metabolism and transport. Plant Physiol. Biochem., 39, 743–58.
- Chen, C.C., Chen, Y.P., Hsu, H.Y., Lee, K.H., Tani, S. and McPhail, A.T. (1985) Bauhinin, a new nitrile glucoside from Bauhinia championii . J. Nat. Prod., 48, 933–7.
- Chen, S., Petersen, B.L., Olsen, C.E., Schulz, A. and Halkier, B.A. (2001) Long-distance phloem transport of glucosinolates in Arabidopsis . Plant Physiol., 127, 194–201.
- Chen, S.X. and Halkier, B.A. (1999) Functional expression and characterization of the myrosinase MYR1 from Brassica napus in Saccharomyces cerevisiae . Protein Expr. Purif., 17, 414–20.
- Cheng, I.P. and Poulton, J.E. (1993) Cloning of cDNA of Prunus serotina (R)-(+)mandelonitrile lyase and identification of a putative FAD-binding site. Plant Cell Physiol., 34, 1139–43.
- Chew, F.S. (1988) Biological effects of glucosinolates, in Biologically Active Natural Products Potential Use in Agriculture (ed. H.G. Cutler). American Chemical Society Press, Washington, pp. 155–81.
- Chew, M.Y. (1973) Rhodanese in higher plants. Phytochemistry, 12, 2365–7.
- Chisholm, M.D. and Wetter, L.R. (1964) Biosynthesis of mustard oil glucosides. IV. The administration of methionine-C14 and related compounds to horseradish. Can. J. Biochem., 42, 1033–40.
- Choesin, D.N. and Boerner, E.J. (1991) Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaceae). Am. J. Bot., 78, 1083–90.
- Christoffersen, R.E., Percival, F.W. and Bozak, K.R. (1995) Functional and DNA sequence divergence of the CYP71 gene family in higher plants. Drug Metab. Drug Interact., 12, 207–19.
- Cicek, M. and Esens, A. (1995) Cloning and sequencing of a cDNA coding for β-glucosidase (dhurrinase) from Sorghum bicolor (L.). Moench. Plant Physiol., 109, 1497.
- Cipolline R., Ascenzi, P. and Visca, P. (2007) Critical review: common themes and variations in the rhodanese superfamily, IUBMB Life, 59(2), 51–9.
- Clegg, D.O., Conn, E.E. and Janzen, D.H. (1979) Developmental fate of the cyanogenic glucoside, linamarin, in Costa Rican wild lima bean seeds. Nature, 278, 343–4.
- Collinge, D.B. and Hughes, M.A. (1982) In vitro characterization of the Ac-locus in white clover (Trifolium repens). Arch. Biochem. Biophys., 218, 38–45.
- Colowick, S.P., Kaplan, N.O. and Ciotti, M.M. (1951) The reaction of pyridine-nucleotide with cyanide and its analytical use. J. Biol. Chem., 191, 447–59.
- Compton, S.G. and Jones, D.A. (1985) An investigation of the response of herbivores to cyanogenesis in Lotus corniculatus (L.). Biol. J. Linnean Soc., 26, 21–38.
- Conn, E.E. (1980) Cyanogenic compounds. Annu. Rev. Plant Physiol., 31, 433–51.
-
Conn, E.E.
(1981)
Cyanogenic glycosides, in
Secondary Plant Products (ed.
E.E. Conn), Vol.
7,
The Biochemistry of Plants (eds
P.K. Stumpf and
E.E. Conn).
Academic Press,
New York, pp.
479–500.
10.1016/B978-0-12-675407-0.50022-1 Google Scholar
-
Conn, E.E.
(1983)
Cyanogenic glucosides: a possible model for the biosynthesis of natural products, in
The New Frontiers in Plant Biochemistry (eds
T. Akazawa,
T. Ashai and
H. Imaseki).
Japan Scientific Societies Press,
Tokyo, pp.
11–22.
10.1007/978-94-009-6854-7_2 Google Scholar
- Conn, E.E. (1988) Biosynthetic relationship among cyanogenic glycosides, glucosinolates and nitro-compounds, in Biologically Active Natural Products: Potential Use in Agriculture (ed. G. Cutler). American Chemical Society, Washington, pp. 143–54.
- Conn, E.E. (2008) Our work with cyanogenic plants. Annu. Rev. Plant Biol., 59, 1–19.
- Cooke, R.D. (1978) An enzymatic assay for the total cyanide content of Cassava (Manihot esculenta). J. Sci. Food Agric., 29, 345–52.
- Cutler, A.J. and Conn, E.E. (1981) The biosynthesis of cyanogenic glucosides in Linum usitatissimum (linen flax) in vitro. Arch. Biochem. Biophys., 212, 468–74.
- Cutler, A.J., Sternberg, M. and Conn, E.E. (1985) Properties of a microsomal enzyme system from Linum usitatissimum (linen flax), which oxidizes valine to acetone cyanohydrin and isoleucine to 2-methylbutanone cyanohydrin. Arch. Biochem. Biophys., 238, 272–9.
- Dalgaard, L., Nawaz, R. and Sørensen, H. (1977) 3-Methylthiopropylamine and (R)–3-methylsulphinylpropylamine in Iberis amara . Phytochemistry, 16, 931–2.
- Dawson, G.W., Hick, A.J., Bennett, R.N., Donald, A.M. and Wallsgrove, R.M. (1993) Synthesis of glucosinolate precursors and investigations into the biosynthesis of phenylalkyl- and methylthioalkylglucosinolates. J. Biol. Chem., 268, 27154–9.
- De Bruijn, G.H. (1973) The cyanogenic character of cassava (Manihot esculenta), in Chronic Cassava Toxicity (eds B. Nestel and R. Maclntyre). International Development Research Centre, Ottawa, Canada, pp. 43–48.
- Desmaison, A.M. and Tixier, M. (1986) Amino acids content in germinating seeds and seedlings from Castanea sativa L. Plant Physiol., 81, 692–5.
- Dirzo, R. and Harper, J.L. (1982) Experimental studies on slug-plant interactions III. Differences in the acceptability of individual plants of Trifolium repens to slugs and snails. J. Ecol., 70, 101–17.
- Doughty, K.J., Porter, A.J.R., Morton, A.M., Kiddle, G. and Bock, C.H. (1991) Variation in the glucosinolate content of oilseed rape (Brassica napus L.) leaves. II. Response to infection by Alternaria brassicae (Berk.) Sacc. Ann. Appl. Biol., 118, 469–78.
- Du, L. and Halkier, B.A. (1996) Isolation of a microsomal enzyme system involved in glucosinolate biosynthesis from seedlings of Tropaeolum majus (L.). Plant Physiol., 111, 831–7.
- Du, L., Lykkesfeldt, J., Olsen, C.-E. and Halkier, B.A. (1995a) Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba (L.). Proc. Natl. Acad. Sci. North Am., 92, 12505–509.
- Dufour, D.L. (1994) Cassava in Amazonia: lessons in utilization and safety from native people. Acta Horticulture, 375, 175–82.
-
Durham, P.L. and
Poulton, J.E.
(1990)
Enzyme properties of purified myrosinase from Lepidium sativum seedlings.
Z. Naturforsch.,
45c,
173–8.
10.1515/znc-1990-3-406 Google Scholar
-
Effenberger, F.
(1994)
Synthese and reaktion optisch aktiver cyanohydrine.
Angew. Chem.,
106,
1009–19.
10.1002/ange.19941061504 Google Scholar
- Effenberger, F., Ziegler, T. and Förster, S. (1987) Enzyme-catalyzed reaction. 15. Preparation of (R)-2-(sulfonyloxy)-nitriles and their reactions with acetates: inversion of the configuration of optically active cyanohydrins. Chem. Ber., 126, 779–86.
- Elias, M., Nambisan, B. and Sudhakaran, P.R. (1997) Catabolism of linamarin in cassava (Manihot esculenta Crantz). Plant Sci., 126, 155–62.
- Erb, N., Zinsmeister, H.D., Lehmann, G. and Nahrstedt, A. (1979) Epiheterodendrin: a new cyanogenic glucoside from Hordeum vulgare . Phytochemistry, 18, 1515–7.
- Eriksson, S., Andreasson, E., Ekbom, B., Graner, G., Pontoppidan, B., Taipalensuu, J., Zhang, J., Rask, L. and Meijer, J. (2002) Complex formation of myrosinase isoenzymes in oilseed rape seeds are dependent on the presence of myrosinase-binding proteins. Plant Physiol., 129, 1592–9.
- Ettlinger, M.G. and Dateo, G.P. (1961) Studies of mustard oil glucosides. Final Report Contract DA19–129-QM-1059, US Army Natick Laboratories, Natick, MA.
- Ettlinger, M.G. and Kjxr, A. (1968) Sulfur compounds in plants. Recent Adv. Phytochem., 1, 59–144.
- Fahey, J.W., Zalcmann, A.T. and Talalay, P. (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56, 5–51.
- Falk, A., Taipalensuu, J., Lenman, M. and Rask, L. (1995) Characterization of rapeseed myrosinase-binding protein. Planta, 195, 387–95.
- Fan, T.W.-M. and Conn, E.E. (1985) Isolation and characterization of two β-glucosidases from flax seeds. Arch. Biochem. Biophys., 243, 361–73.
- Feeny, P. (1976) Glucosinolates, in Biochemical Interaction Between Plants and Insects (eds J. Wallace and R. Mansell). American Chemical Society, Washington, DC.
- Foo, H.L., Gronning, L.M., Goodenough, L., Bones, A.M., Danielsen, B.E., Whiting, D.A. and Rossiter, J.T. (2000) Purification and characterisation of epithiospecifier protein from Brassica napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Lett., 468, 243–6.
- Forslund, K., Morant, M., Jørgensen, B., Olsen, C.E., Asamizu, E., Sato, Sh., Tabata, S. and Bak, S. (2004) Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides Lotaustralin and Linamarin in Lotus japonicus . Plant Physiol., 135, 71–84.
-
Fowden, L.
(1981)
Nonprotein amino acids, in
The Biochemistry of Plants (eds
P.K. Stumpf and
E.E. Conn), Vol.
7,
Secondary Plant Products.
Academic Press,
New York, pp.
215–47.
10.1016/B978-0-12-675407-0.50014-2 Google Scholar
- Fowden, L. and Mazelis, M. (1971) Biosynthesis of 2-amino-4-methylnex-4-enoic acid in Aesculus californica: the precursor role of isoleucine. Phytochemistry, 10, 359–65.
- Frehner, M. and Conn, E.E. (1987) The linamarin β-glucosidase in Costa Rican wild bean (Phaseolus lunatus L.) is apoplastic. Plant Physiol., 84, 1296–300.
- Frehner, M., Scalet, M. and Conn, E.E. (1990) Pattern of the cyanide-potential in developing fruits. Plant Physiol., 94, 28–34.
- Food Standards Australia New Zealand (2005) Ohne Autorenangabe: cyanogenic glycosides in cassava and bamboo shoots – a human health risk assessment. Technical Report Series No. 28, ISBN 0 642 34551 1.
-
Gershenzon, J.
(1984)
Changes in the levels of plant secondary metabolites under water and nutrient stress, in
Recent Advances in Phytochemistry. 18. Phytochemical Adaptations to Stress (eds
B.N. Timmermann,
C. Steelink and
F.A. Loewus).
Plenum,
New York, pp.
273–320.
10.1007/978-1-4684-1206-2_10 Google Scholar
- Geshi, N. and Brandt, A. (1997) Two jasmonate inducible proteins from Brassica napus seedlings homologous to myrosinase-binding proteins and jacalin. Planta, 204, 295–304.
- Giamoustaris, A. and Mithen, R. (1996) Genetics of aliphatic glucosinolates. IV. Side-chain modification in Brassica oleracea . Theor. Appl. Genet., 93, 1006–10.
- Gleadow, R.M. and Woodrow, I.E. (2002) Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J. Chem. Ecol., 28, 1301–13.
- Glen, D.M., Jones, H. and Fieldsend, J.K. (1990) Damage to oilseed rape seedlings by the field slug, Deroceras reticulaum, in relation to glucosinolate concentration. Anal. Appl. Biol., 117, 197–207.
- Glendening, T.M. and Poulton, J.E. (1988) Glucosinolate biosynthesis. Sulfation of desulfoglucosinolate by cell-free extracts of cress (Lepidium sativum L.) seedling. Plant Physiol., 86, 319–21.
-
Godwin, H. and
Bishop, L.R.
(1927)
The behaviour of the cyanogenic glucosides of cherry laurel during starvation.
New Phytol.,
26,
295–315.
10.1111/j.1469-8137.1927.tb06725.x Google Scholar
- Greenhalgh, J.R. and Mitchell, N.D. (1976) The involvement of flavour volatiles in the resistance to downy mildew of wild and cultivated forms of Brassica oleracea . New Phytol., 77, 391–8.
- Grob, K. and Matile, P.H. (1979) Vacuolar location of glucosinolates in horseradish root cells. Plant Sci. Lett., 14, 327–35.
- Grob, K. and Matile, P.H. (1980) Compartmentation of ascorbic acid in vacuoles of horseradish root cells: note on vacuolar peroxidase. Z. Pflanzenphys., 98, 235–43.
- Grubb, C.D. and Steffen, A. (2006) Glucosinolate metabolism and its control. Trends Plant Sci., 11, 89–100.
- Grubb, C.D., Zipp, B.J., Ludwig-Muller, J., Masuno, M.N., Molinski, T.F. and Abel, S. (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxinhomeostasis. Plant J., 40, 893–908.
- Gruhnert, C., Biehl, B. and Selmar, D. (1994) Compartmentation of cyanogenic glucosides and their degrading enzymes. Plant Physiol., 195, 36–42.
-
Grützmacher, H.,
Biehl, B.,
Czygan, F.C. and
Selmar, D.
(1990)
Variations in HCN potential in Dimorphotheca sinuata
.
Planta Med.,
56,
610–11.
10.1055/s-2006-961232 Google Scholar
- Guignard, L. (1980) Recherches sur la localisation des principles actifs des cruciferes. J. Botanique, 4, 385–94.
- Guo, I. and Poulton, J.E. (1994) Partial purification and characterization of Arabidopsis thaliana UDPG: thiohydroximate glucosyltransferase. Phytochemistry, 36, 1133–8.
- Hahlbrock, K. and Conn, E.E. (1970) The biosynthesis of cyanogenic glycosides in higher plants: purification and properties of a uridine diphosphate-glucose-ketone cyanohydrin β-glucosyltransferase from Linum usitatissimum (L.). J. Biol. Chem., 245, 917–22.
- Halkier, B.A. (1999) Glucosinolates, in Naturally Occurring Glycosides (ed. R. Ikan). Wiley, Chichester, UK, pp. 193–223.
- Halkier, B.A. and Gershenzon, J. (2006) Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol., 57, 303–33.
-
Halkier, B.A.,
Hansen, C.H.,
Naur, P.,
Mikkelsen M.D. and
Wittstock, U.
(2002)
Biosynthesis and evolution of glucosinolates – the role of cytochromes P450, in
Recent Advances in Phytochemistry – Phytochemistry in the Genomics and Post-Genomics Eras (eds
J.T. Romeo and
R.A. Dixon).
Pergamon,
Oxford.
10.1016/S0079-9920(02)80029-6 Google Scholar
- Halkier, B.A., Lykkesfeldt, J. and Møller, B.L. (1991) 2-Nitro-3-(p-hydroxyphenyl) propionate and aci-1-nitro-2-(p-hydroxyphenyl)ethane, two intermediates in the biosynthesis of the cyanogenic glucoside, dhurrin, in Sorghum bicolor (L.). Moench. Proc. Natl. Acad. Sci., 88, 487–91.
- Halkier, B.A. and Møller, B.L. (1989) Biosynthesis of the cyanogenic glucoside, dhurrin, in seedlings of Sorghum bicolor (L.). Moench and partial purification of the enzyme system involved. Plant Physiol., 90, 1552–9.
- Halkier, B.A. and Møller, B.L. (1990) The biosynthesis of the cyanogenic glucosides in higher plants: identification of three hydroxylation steps in the biosynthesis of dhurrin in seedlings of Sorghum bicolor (L.). Moench. and the involvement of 1-aci-nitro-2-(p-hydroxyphenyl)-ethane as intermediate. J. Biol. Chem., 265, 21114–21.
- Halkier, B.A. and Møller, B.L. (1991) Involvement of cytochrome P450 in the biosynthesis of dhurrin in Sorghum bicolor (L.). Moench. Plant Physiol., 96, 10–17.
- Halkier, B.A., Nielsen, H.L., Koch, B. and Møller, B.L. (1995) Purification and characterization of recombinant cytochrome P450, cyr expressed at high levels in Escherichia coli . Arch. Biochem. Biophys., 322, 369–77.
- Halkier, B.A., Olsen, C.E. and Møller, B.L. (1989) The biosynthesis of cyanogenic glucosides in higher plants: The (E)- and (Z)-isomers of p-hydroxyphenyl-acetaldehyde oxime as intermediates in the biosynthesis of dhurrin in Sorghum bicolor (L.). Moench. J. Biol. Chem., 264, 19487–94.
- Halkier, B.A., Scheller, H.V. and Møller, B.L. (1988) Cyanogenic glucosides: the biosynthetic pathway and the enzyme system involved, in Cyanide Compounds in Biology (eds D. Everett and S. Harnett). Wiley, Chichester, UK, pp. 49–61.
- Hall, C., McCallum, D., Prescott, A. and Mithen, R. (2001) Biochemical genetics of glucosinolate modification in Arabidopsis and Brassica . Theor. Appl. Genet., 102, 369–74.
- Hansen, C.H., Du, L.C., Naur, P., Olsen, C.E., Axelsen, K.B., Hick, A.J., Pickett, J.A. and Halkier, B.A. (2007) CYP83B1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis . J. Biol. Chem., 276, 24790–96.
- Hansen, K.S., Kristensen, C., Tattersall, D.B., Jones, P.R., Olsen, C.E., Bak, S. and Møller, B.L. (2003) The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolour . Phytochemistry, 64, 143–51.
- Hasslacher, M., Schall, M., Hayn, M., Griengl, H., Kohlwein, S.D. and Schwalb, H. (1996) Molecular cloning of the full-length cDNA of (S)-hydroxynitrile lyase from Hevea brasiliensis . J. Biol. Chem., 271, 5884–91.
- Hatzfeld, Y. and Saito, K. (2000) Evidence for the existence of rhodanese (thiosulfate:cyanide sulfurtransferase) in plants: preliminary characterization of two rhodanese cDNAs from Arabidopsis thaliana AU. FEBS Lett., 470, 147–50.
-
Hegnauer, R.
(1986)
Chemotaxonomie der Planzen, Vol.
7.
Birkhäuser Verlag,
Basel-Stuttgart, p.
345ff.
10.1007/978-3-0348-9314-5 Google Scholar
- Helmlinger, J., Rausch, T. and Hilgenberg, W. (1983) Localization of newly synthesized indole-3-methylglucosinolate (=glucobrassicin) in vacuoles from horseradish (Armoracia rusticana). Physiol. Plantarum, 58, 302–10.
- Henry, M.F. (1981) Bacterial cyanide-resistant respiration: a review, in Cyanide in Biology (eds B. Vennesland, E.E. Conn, C.J. Knowles, J. Westley and F. Wissing). Academic Press, London, pp. 415–36.
- Hickel, A., Hasslacher, M. and Griengl, M.H.A. (1996) Hydroxynitrile lyases: functions and properties. Physiol. Plantarum, 98, 891–8.
- Hogge, L.R., Reed, D.W., Underhill, E.W. and Haughn, G.W. (1988) HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid chromatography/mass spectrometry. J. Chromatogr. Sci., 26, 551–6.
- Høglund, A.-S., Lenman, M., Falk, A. and Rask, L. (1991) Distribution of myrosinase in rapeseed tissues. Plant Physiol., 95, 213–21.
- Høglund, A.-S., Lenman, M. and Rask, L. (1992) Myrosinase is localized to the interior of myrosin grains and is not associated to the surrounding tonoplast membrane. Plant Sci., 85, 165–70.
- Holst, B. and Williamson, G. (2004) A critical review of the bioavailability of glucosinolates and related compounds. Nat. Prod. Rep., 21, 425–47.
- Holton, T.A., Brugliera, F., Lester, D.R., Tanaka, Y., Hyland, C.D., Menting, J.G.T., Lu, C.Y., Farcy, E., Stevenson, T.W. and Cornish, E.C. (1993) Cloning and expression of cytochromic P450 genes controlling flower colour. Nature, 366, 276–9.
- Hösel, W., Berlin, J., Hanzlik, T.N. and Conn, E.E. (1985) In vitro biosynthesis of 1-(4′-hydroxyphenyl)-2-nitroethane and production of cyanogenic compounds in osmotically stressed cell suspension cultures of Eschscholtzia californica . Planta, 166, 176–81.
- Hösel, W. and Nahrstedt, A. (1975) Spezifische Glucosidasen für das Cyanglucosid Triglochinin, Reinigung and Charakterisierung von β-Glucosidasen aus Alocasia macrorrhiza, Schott. Hoppe-Seyler's Z. Physiol. Chem., 356, 1265–75.
- Hösel, W. and Nahrstedt, A. (1980) In vitro biosynthesis of the cyanogenic glucoside, taxiphyllin, in Triglochin maritima . Arch. Biochem. Biophys., 203, 753–7.
- Hösel, W. and Schiel, O. (1984) Biosynthesis of the cyanogenic glucosides: in vitro analysis of the glucosylation step. Arch. Biochem. Biophys., 229, 177–86.
- Hösel, W., Tobler, L., Eklund, S.H. and Conn, E.E. (1987) Characterization of β-glucosidases with high specificity for the cyanogenic glucoside, dhurrin, in Sorghum bicolor (L.). Moench seedlings. Arch. Biochem. Biophys., 252, 152–62.
- Hu, Z. and Poulton, J.E. (1997) Sequencing, genomic organization and preliminary promotor analysis of black cherry (R)-(+)-mandelonitrile lyase gene. Plant Physiol., 115(4), 1359–69.
- Hu, Z. and Poulton, J.E. (1999) Members of the multigene family encoding black cherry (Prunus serotina) (R)-(+)-mandelonitrile lyase are differentially expressed. Plant Physiol., 119, 1535–46.
- Hübel, W., Nahrstedt, A., Fikenscher, L.H. and Hegnauer, R. (1982) Zierinxylosid, eine neues cyanogenes Glykosid aus Xeranthemum cylindraceum . Planta Med., 44, 178–80.
- Hughes, M.A. (1981) The genetic control of plant cyanogenesis, in Cyanide in Biology (eds B. Vennesland, E.E. Conn, C.J. Knowles, J. Westley and F. Wissing). Academic Press, London, pp. 495–508.
- Hughes, J., de Carvalho, F.J.P. and Hughes, M.A. (1994) Purification, characterization and cloning of α-hydroxynitrile lyase from cassava (Manihot esculenta Crantz). Arch. Biochem. Biophys., 311, 496–502.
- Hughes, M.A., Brown, K., Pancoro, A., Murray, B.S., Oxtoby, E. and Hughes, J. (1992) A molecular and biochemical analysis of the structure of the cyanogenic β-glucosidase (linamarase) from cassava (Manihot esculenta Cranz). Arch. Biochem. Biophys., 295, 273–9.
-
Hunt, S.
(1985)
Nonprotein amino acids, in
Chemistry and Biochemistry of Amino Acids (ed.
G.C. Barrett).
Chapman & Hall,
London.
10.1007/978-94-009-4832-7_4 Google Scholar
- Husebye, H., Chadchawan, S., Winge, P., Thangstad, O.P. and Bones, A.M. (2002) Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis . Plant Physiol., 128, 1180–88.
- Ikegami, F., Itagaki, S. and Murakoshi, I. (1993) Purification and characterization of two forms of cysteine synthase from Allium tuberosum . Phytochemistry, 32, 31–4.
- Ikegami, F., Mizuno, M. and Murakoshi, I. (1990) Enzymatic synthesis of the thyrotoxic amino acid, mimosine, by cysteine synthase. Phytochemistry, 29, 3461–6.
- Ikegami, F. and Murakoshi, I. (1994) Enzymatic synthesis of nonprotein β-substituted alanines and some higher homologues in plants. Phytochemistry, 35, 1089–104.
- Irandoost, Z. (2003) Transportmetabolite cyanogener Glucoside. PhD Thesis, Faculty of Natural Science, Technical University Braunschweig.
- Istock, U., Lieberei, R. and Harms, H. (1990) Pattern of enzymes involved in cyanogenesis and HCN metabolism in cell cultures of Phaseolus lunatus (L.) varieties. Plant Cell Tiss. Org. Cult., 22, 105–12.
- Jäger, A.K., McAlister, B.G. and Staden, J. (1995) Cyanogenic glycosides in leaves and callus cultures of Schlechterina mitostemmatoides . S. Afr. J. Bot., 61, 274–5.
- Jain, J.C., GrootWassink, J.W.D., Kolenovsky, A.D. and Unterhill, E.W. (1990a) Purification and properties of 3′-phosphoadenosine-5′-phosphosulphate: desulphoglucosinolate sulphotransferase from Brassica juncea cell cultures. Phytochemistry, 29, 1425–8.
- Jain, J.C., GrootWassink, J.W.D., Reed, D.W. and Underhill, E.W. (1990b) Persistent copurification of enzymes catalyzing the sequential glucoxylation and sulfation step in glucosinolate biosynthesis. J. Plant Physiol., 136, 356–61.
- Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., M'etraux, J.-P. and Mauch-Mani, B. (2001) β-Aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol., 107, 29–37.
- Janzen, D.J., Allen, L.J., MacGregor, K.B. and Bown, A.W. (2001) Cytosolic acidification and γ-aminobutyric acid synthesis during the oxidative burst in isolated Asparagus sprengeri mesophyll cells. Can. J. Bot., 79, 438–43.
- Jaroszewski, J.W. and Fog, E. (1989) Sulfate esters of cyclopentenoid cyanohydrin glycosides. Phytochemistry, 28, 1527–8.
- Jaroszewski, J., Olafsdottir, E.S., Wellendorph, P., Christensen, J., Franzyk, H., Somanadhan, B., Budnik, B.A., Jørgensen, L.B. and Clausen, V. (2002) Cyanohydrin glycosides of Passiflora: distribution pattern, a saturated cyclopentane derivative from P. guatemalensis, and formation of pseudocyanogenic α-hydroamides as isolation artefact. Phytochemistry, 59, 501–511.
- John, P. (1997) Ethylene biosynthesis: the role of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and its possible evolutionary origin. Physiol. Plantarum, 100, 583–92.
-
Jones, D.A.
(1988)
Cyanogenesis in animal–plant interactions, in
Cyanide Compounds in Biology (eds
D. Everett and
S. Harnett).
Wiley,
Chichester, pp.
151–65.
10.1002/9780470513712.ch10 Google Scholar
- Jones, D.A. (1998) Why are so many food plants cyanogenic? Phytochemistry, 47, 155–62.
- Jones, P.R. and Vogt, T. (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta, 213, 164–74.
- Jongen, W.M.F. (1996) Glucosinolates in Brassica: occurrence and significance as cancer-modulating agents. Proc. Nutr. Soc., 55, 433–46.
- Jørgensen, K., Bak, S., Busk, P.K., Sørensen, C., Olsen, C.E., Puonti-Kaerlas, J. and Møller, B.L. (2005a) Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol., 139, 363–74.
- Jørgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N., Zagrobelny, M., Bak, S. and Møller, B.L. (2005b) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol., 8, 280–91.
- Josefsson, E. (1973) Studies on the biochemical background to differences in glucosinolate content in Brassica napus (L.). III. Further studies to localize metabolic blocks. Plant Physiol., 29, 28–32.
- Joseph, M.A., Moysich, K.B., Freudenheim, J.L., Shields, P.G., Bowman, E.D., Zhang, Y., Marshall, J.R. and Ambrosone, C.B. (2004) Cruciferous vegetables, genetic polymorphisms in glutathione S-transferases M1 and T1, and prostate cancer risk. Nutr. Cancer, 50, 206–13.
- Joseph, T., Yeoh, H.-H. and Loh, C-S. (1999) Cyanogenesis in somatic embryos and plantlets of cassava (Manihot esculenta Crantz). J. Sci. Food Agric., 79, 1071–4.
- Juge, N., Mithen, R.F. and Traka, M. (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell. Mol. Life Sci. (CMLS), 64, 1105–27.
- Kaethler, F., Pree, D.J. and Brown, A.W. (1982) HCN: a feeding deterrent in peach to the oblique-banded leafroller. Ann. Entomol. Soc. Am., 75, 568–73.
- Kahn, R.A., Bak, S., Svendsen, L., Halkier, B.A. and Møller, B.L. (1997) Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside, dhurrin, from sorghum. Plant Physiol., 115, 1661–70.
- Kakes, P. (1985) Linamarase and other β-glucosidases are present in the cell walls of Trifolium repens leaves. Planta, 166, 156–60.
- Kakes, P. (1990) Properties and function of the cyanogenic system in higher plants. Euphytica, 48, 25–43.
- Kakes, P. and Hakvoort, H. (1992) Is there rhodanese activity in plants? Phytochemistry, 31, 1501–5.
- King, N.L.R. and Bradbury, J.H. (1995) Bitterness of cassava: identification of a new apiosyl glucoside and other compounds that affect its bitter taste. J. Sci. Food Agric., 68, 223–30.
- Kinnersley, A.M. and Lin, F. (2000) Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants. J. Plant Growth Regul., 32, 65–76.
- Kinnersley, A.M. and Turano, F.J. (2000) Gamma aminobu-tyric acid (GABA) and plant responses to stress. Crit. Rev. Plant Sci., 19, 479–509.
- Kjaer, A. and Schuster, A. (1972a) Glucosinolates in seeds of Arabis hirsuta (L). Acta Chem. Scand., 26, 8–14.
- Kjaer, A. and Schuster, A. (1972b) Glucosinolates in seeds of Neslia paniculata . Phytochemistry, 11, 3045–8.
- Kleinwächter, M. and Selmar, D. (2004) A novel approach for reliable activity determination of ascorbic acid depending myrosinases. J. Biochem. Biophys. Methods, 59, 253–65.
- Kliebenstein, D.J., Lambrix, V.M., Reichelt, M., Gershenzon, J. and Mitchell-Olds, T. (2001) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutaratedependent dioxygenases control glucosinolate biosynthesis in Arabidopsis . Plant Cell, 13, 681–93.
- Koch, B., Nielsen, V.S., Halkier, B.A. and Møller, B.L. (1992) The biosynthesis of cyanogenic glucosides in seedlings of cassava (Manihot esculenta Crantz). Arch. Biochem. Biophys., 292, 141–50.
- Koch, B.M., Sibbensen, O., Halkier, B.A., Svendsen, B. and Møller, B.L. (1995) The primary sequence of Cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of l-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch. Biochem. Biophys., 323, 177–86.
-
Koch, B.M.,
Sibbensen, O.,
Swain, E.,
Kahn, R.A.,
Liangcheng, D.,
Bak, S.,
Halkier, B.A.,
Svendsen, I. and
Møller, B.L.
(1994)
Possible use of a biotechnological approach to optimize and regulate the content and distribution of cyanogenic glucosides in cassava to increase food safety.
Acta Horticulture, 375, 45–60.
10.17660/ActaHortic.1994.375.2 Google Scholar
- Kojima, M., Poulton, J.E., Thayer, S.S. and Conn, E.E. (1979) Tissue distribution of dhurrin and enzymes involved in its metabolism in leaves of Sorghum bicolor. Plant Physiol., 67, 617–22.
- Koppitz, H., Dewender, M., Ostendorp, W. and Schmieder, W. (2004) Amino acids as indicators of physiological stress in common reed Phragmitis australis affected by an extreme flood. Aquat. Bot, 79, 277–94.
- Koroleva, O.A., Davies, A., Deeken, R., Thorpe, M.R., Tomos, A.D. and Hedrich, R. (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol., 124, 599–608.
- Koukol, J., Miljanich, P. and Conn, E.E. (1962) The metabolism of aromatic compounds in higher plants. VI. Studies on the biosynthesis of dhurrin, the cyanogenic glucoside of Sorghum bicolor . J. Biol. Chem., 237, 3223–8.
- Kreuzfeld, H.J., Doebler, C., Schmidt, U. and Krause, H.K. (1996) Synthesis of nonproteinogenic (d)- or (l)-amino acids by asymmetric hydrogenation. Amino Acids, 11, 269–82.
- Kristensen, C., Morant, M., Olsen, C.E., Ekstrøm, C.T., Galbraith, D.W., Møller, B.L., and Bak, S. (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. PNAS – Proc. Natl. Acad. Sci., 102, 1779–84.
- Kroymann, J., Donnerhacke, S., Schnabelrauch, D. and Mitchell-Olds, T. (2003) Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc. Natl. Acad. Sci. USA, 100, 14587–92.
- Kroymann, J., Textor, S., Tokuhisa, J.G., Falk K.L., Bartram, S., Gershenzon, J. and Mitchell-Olds, Z. (2001) A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol., 127, 1077–88.
- Kuroki, G., Lizotte, P.A. and Poulton, J.E. (1984) Catabolism of (R)-amygdalin and (R)-vicianin by partially purified β-glucosidases from Prunus serotina Ehrh. and Davallia trichomanoides . Z. Naturforsch., 39, 232–9.
- Kuroki, G.W. and Poulton, J.E. (1987) Isolation and characterization of multiple forms of prunasin hydrolase from black cherry (Prunus serotina Ehrh.) seeds. Arch. Biochem. Biophys., 255, 19–26.
-
Kurzhals, C.,
Grützmacher, H.,
Selmar, D. and
Biehl, B.
(1990)
Linustatin, the linamarin glucoside protected against cleavage by apoplastic linamarase.
Planta Med.,
55,
673.
10.1055/s-2006-962276 Google Scholar
- Kutachek, M., Prochazka, Z. and Veres, K. (1962) Biogenesis of glucobrassicin, the in vitro precursor of ascorbigen. Nature, 104, 393–4.
- Lambrix, V., Reichelt, M., Mitchell-Olds, T., Kliebenstein, D.J. and Gershenzon, J. (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell, 13, 2793–807.
- Lang, I. (1990) Cyanogene Verbindungen in Nahrungs, Gewürz- und Genuβmittelpflanzen sowie in Nahrungs- und Genuβmitteln. Master Thesis (Diplomarbeit), Faculty of Biology, University of Saarbrücken.
- Larsen, P.O. (1981) Glucosinolates, in The Biochemistry of Plants (eds P.K. Stumpf and E.E. Conn), Vol. 7, Secondary Plant Products, Academic Press, New York, pp. 501–25.
- Lechtenberg, M. and Nahrstedt, A. (1999) Cyanogenic glycosides, in Naturally Occurring Glycosides (ed R. Ikan). Wiley, Chichester, pp. 147–91.
- Lechtenberg, M., Nahrstedt, A. and Fronczek, F.R. (1996) Leucine-derived nitrile glucosides in the Rosaceae and their systematic significance. Phytochemistry, 41, 779–85.
- Lein, K.-A. (1972) Zur quantitativen Bestimmungen des Glucosinolatgehaltes in Brassica-Samen. I. Gewinnung und Reinigung der Myrosinase. Z. Angew. Botanik, 46, 137–59.
- Lenman, M., Falk, A., Roedin, J., Hoeglund, A.-S., Ek, B. Rask, L. (1993a) Differential expression of myrosinase gene families. Plant Physiol., 103, 703–11.
- Lenman, M., Falk, A., Xue, J. and Rask, L. (1993b) Characterization of a Brassica napus myrosinase pseudogene: myrosinases are members of the BGA family of β-glycosidases. Plant Mol. Biol., 21, 463–74.
- Lieberei, R. (1988) Relationship of cyanogenic capacity (HCN-c) of the rubber tree Hevea brasiliensis to susceptibility to Microcyclus ulei, the agent causing South American leaf blight. J. Phytopathol., 122, 54–67.
- Lieberei, R. (2007) South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Ann. Bot., 100(6), 1125–42.
- Lieberei, R., Biehl, B., Giesemann, A. and Junqueira, N.T.V. (1989) Cyanogenesis inhibits active defense reactions in plants. Plant Physiol., 90, 33–6.
- Lieberei, R., Fock, H. and Biehl, B. (1992) Cyanogenesis inhibits active pathogen defence in plants: inhibition by gaseous HCN of photosynthetic CO2 fixation and respiration in intact leaves. J. Appl. Bot., 70, 230–38.
- Lieberei, R. and Selmar, D. (1990) Determination of rhodanese in plants. Phytochemistry, 29, 1421–4.
- Lieberei, R., Selmar, D. and Biehl, B. (1985) Metabolization of cyanogenic glycosides in Hevea brasiliensis . Plant System. Evol., 105, 49–63.
- Linscheid, M., Wendisch, D. and Strack, D. (1980) The structures of sinapic acid esters and their metabolism in cotyledons of Raphanus sativus . Z. Naturforsch., 35c, 907.
- Lipson, D.A., Bowman, W.D. and Monson, R.K. (1996) Luxury uptake and storage of nitrogen in the rhizomatous alpine herb, Bistorta bistortoides . Ecology, 77, 1277–85.
- Lizotte, P.A. and Poulton, J.E. (1986) Identification of (R)-vicianin in Davallia trichomanoides . Z. Naturforsch. Sektion C, 41, 5–8.
- Louda, S. and Mole, S. (1991) Glucosinolates, in Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. 1, The Chemical Participants (eds G.A. Rosenthal and M.R. Berenbaum). Academic Press, London, pp. 124–64.
- Lüdtke, M. and Hahn, H. (1953) Über den Linamaringehalt gesunder und von Colletotrichum befallener junger Leinpflanzen. Biochem. Z., 324, 433–42.
- Ludwig-Müller, J., Bennett, R.N., Kiddles, S., Ihmig, S., Ruppel, M. and Hilgenberg, W. (1999) The host range of Plasmodiophora brassicae and its relationship to endogenous glucosinolate content. New Phytologist, 141, 443–58.
- Ludwig-Müller, J. and Hilgenberg, W. (1988) A plasma membrane-bound enzyme oxidases l-tryptophan to indole-3-acetaldoxime. Physiol. Plantarum, 74, 240–50.
- Ludwig-Müller, J., Rausch, T., Lang, S. and Hilgenberg, W. (1990) Plasma membrane-bound high plant isoenzymes convert tryptophan to indole-3-acetaldoxime. Phytochemistry, 29, 1397–400.
- Ludwig-Müller, J., Schubert, B., Pieper, K., Ihmig, S. and Hilgenberg, W. (1997) Glucosinolate content in susceptible and resistant Chinese cabbage varieties during development of clubroot disease. Phytochemistry, 44, 407–14.
- MacLeod, A.J. and Rossiter, J.T. (1986) Isolation and examination of thioglucoside glucohydrolase from seeds of Brassica napus . Phytochemistry, 25, 1047–52.
- Magrath, R., Bano, F., Parkin, I., Sharpe, A., Lister, C., Dean, C., Turner, J., Lydiate, D. and Mithen, R. (1994) Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana . Heredity 72, 290–99.
- Manici, L.M., Lazzeri, L. and Palmieri, S. (1997) In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products towards plant pathogenic fungi. J. Agric. Food Chem., 45, 2768–73.
- Matile, P.H. (1980) ‘Die Senfölbombe’: Zur Kompartimentierung des Myrosinase systems. Biochem. Physiol. Pflanzen, 14, 327–35.
- Matsuo, M. and Yamazaki, M. (1964) Biosynthesis of siringin. Chem. Pharm. Bull., 12, 1388–9.
- Mayton, H.S., Olivier, C., Vaughn, S.F. and Loria, R. (1996) Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology, 86, 267–71.
- McFarlane, I.J., Less, E.M. and Conn, E.E. (1975) The in vitro biosynthesis of dhurrin, the cyanogenic glucoside of Sorghum bicolor . J. Biol. Chem., 250, 4708–13.
- Mederacke, H., Biehl, B. and Selmar, D. (1995) Glucosyltransferases in Cassava Manihot esculenta . J. Appl. Bot., 69, 119–24.
- Mederacke, H., Biehl, B. and Selmar, D. (1996) Characterization of two cyano-glucosyltransferases from cassava leaves. Phytochemistry, 42, 1517–22.
- Merritt, S.Z. (1996) Within-plant variation in concentrations of amino acids, sugar, and sinigrin in phloem sap of black mustard, Brassica nigra (L) Koch (Cruciferae). J. Chem. Ecol., 22, 1133–45.
- Mikkelsen, M.D., Hansen, C.H., Wittstock, U. and Halkier, B.A. (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J. Biol. Chem., 275, 33712–7.
- Mikkelsen, M.D., Naur, P. and Halkier, B.A. (2004) Arabidopsis mutants in the C–S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J., 37, 770–77.
- Mikkelsen, M.D., Petersen, B.L., Olsen, C.E. and Halkier, B.A. (2002) Biosynthesis and metabolic engineering of glucosinolates (review article). Amino Acids, 22, 279–95.
- Mikolajczak, K.L. (1977) Cyanolipids. Prog. Chem. Fats Lipids, 15, 97–130.
- Miller, R.E., McConville, M.J. and Woodrow, I.E. (2006a) Cyanogenic glycosides from the rare Australian endemic rainforest tree Clerodendrum grayi (Laminaceae). Phytochemistry, 67, 43–51.
- Miller, R.E., Stewart, M., Capon, R.J. and Woodrow, I.E. (2006b) A galloylated cyanogenic glycoside from the Australian endemic rainforest tree Elaeocarpus sericopetalus (Elaeocarpaceae). Phytochemistry, 67, 1365–71.
- Mithen, R., Clarke, J., Lister, C. and Dean, C. (1995) Genetics of aliphatic glucosinolates. III. Side chain structure of aliphatic glucosinolates in Arabidopsis thaliana . Heredity, 74, 210–5.
- Mithen, R. and Lewis, B. (1986) In vitro activity of glucosinolates and their products against Leptosphaeria maculans . Trans. Br. Mycol. Soc., 87, 433–40.
- Mkpong, O.E., Yan, H., Chism, G. and Sayre, R.T. (1990) Purification, characterization and localization of linamarase in cassava. Plant Physiol., 93, 176–81.
- Møller, B.L. and Conn, E.E. (1979) The biosynthesis of cyanogenic glucosides in higher plants: N-hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor . J. Biol. Chem., 254, 8575–83.
- Møller, B.L. and Conn, E.E. (1980) The biosynthesis of cyanogenic glucosides in higher plants: channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor . J. Biol. Chem., 255, 3049–56.
- Møller, B.L. and Seigler, D.S. (1998) Biosynthesis of cyanogenic glucosides, cyanolipids and related compounds, in Plant Amino Acids: Biochemistry and Biotechnology (ed. B. Singh). Decker, New York, pp. 563–609.
- Montgomery, R.D. (1969) Cyanogens, in Toxic Constituents of Plant Foodstuffs (ed. I.E. Liener). Academic Press, London.
- Moore, P.J., Swords, K.M.M., Lynch, M.A. and Staehelin, L.A. (1991) Spatial organization of the assembly pathway of glycoproteins and complex polysaccharides in golgi apparatus of plants. J. Cell Biol., 112, 589–602.
- Morant, A.V., Jørgensen, K., Jørgensen, B., Dam, W., Olsen, C.E., Møller B.L. and Bak, S. (2007) Lessons learned from metabolic engineering of cyanogenic glucosides. Metabolomics, 3, 383–98.
- Murugesan, K. and Radha, A. (1994) Biochemical mechanism of mimosine toxicity to fungi. Int. J. Trop. Plant Dis., 12, 171–6.
- Nahrstedt, A. (1985) Cyanogenic compounds as protecting agents for organisms. Plant Syst. Evol., 105, 35–47.
- Nahrstedt, A. (1987) Recent developments in chemistry, distribution and biology of the cyanogenic glycosides, in Annual Proceedings of the Phytochemical Society of Europe, Vol. 24, Biologically Active Natural Products (eds K. Hostettmann). Oxford University Press, Oxford, pp. 213–34.
- Nahrstedt, A. (1988) Cyanogenesis and the role of cyanogenic compounds in insects. Ciba Found. Symp., 140, 131–50.
- Nahrstedt, A. (1992) The biology of the cyanogenic glycosides: new developments, in Annual Proceedings of the Phytochemical Society of Europe, Vol. 29, Nitrogen Metabolism in Plants (eds K. Mengel and D.J. Pilbeam). Oxford University Press, Oxford, pp. 249–69.
- Nahrstedt, A. (1993) Cyanogenesis in food plants, in Annual Proceedings of the Phytochemical Society of Europe: Phytochemistry and Agriculture (eds T.A. Beek and H. Breteler). Oxford University Press, Oxford, pp. 107–29.
- Nahrstedt, A. (1996) Relationships between the defense systems of plants and insects, in Phytochemical Diversity and Redundancy in Ecological Interactions (eds J.T. Romeo, J.A. Saunders and P. Barbosa). Plenum, New York, pp. 217–30.
- Nahrstedt, A., Hösel, W. and Walter, A. (1979) Characterization of cyanogenic glucosides and β-glucosidases in Triglochin maritima seedlings. Phytochemistry, 18, 1137–41.
- Nahrstedt, A., Jensen, P.S. and Wray, V. (1989) Prunasin-6′-malonate, a cyanogenic glucoside from Merremia dissecta . Phytochemistry, 28, 623–4.
- Nahrstedt, A., Kant, J.D. and Hösel, W. (1984) Aspects of the biosynthesis of the cyanogenic glucoside, triglochinin, in Triglochin maritima . Planta Med., 50, 394–8.
- Nahrstedt, A., Kant, J.D. and Wray, V. (1982) Acalyphin, a new cyanogenic glucoside from Acalypha indica (Euphorbiaceae). Phytochemistry, 21, 101–4.
- Nahrstedt, A., Sattar, E.A. and El-Zalabani, S.M.H. (1990) Amygdalin acyl derivatives: cyanogenic glycosides from the seeds of Merremia dissecta . Phytochemistry, 29, 1179–82.
- Nahrstedt, A. and Schwind, P. (1992) Phenylalanine is the biogenetic precursor of metahydroxylated zierin, the aromatic cyanogenic glucoside of unripe achenes of Xeranthemum cylindraceum . Phytochemistry, 31, 1997–2001.
- Nahrstedt, A., Wray, V., Grotjahn, L., Fikenscher, L.H. and Hegnauer, R. (1983) New acylated cyanogenic diglycosides from fruits of Anthemis cairica and A. altissima . Planta Med., 49, 143.
- Nakanishi, T., Nishi, M., Somekawa, M., Murata, H., Mizuno, M., Iinuma, M., Tanaka, T., Murata, J., Lang, F.A. and Inada, A. (1994) Structures of new and known cyanoglucosides from a North American plant, Purshia tridentata DC. Chem. Pharm. Bull., 42, 2251–5.
- Nambisan, B. and Sundaresan, S. (1994) Distribution of linamarin and its metabolising enzymes in cassava tissues. J. Sci. Food Agric., 66, 503–7.
- Nartey, F. (1968) Studies on cassava, Manihot usitatissimun. Phytochemistry, 20, 1311–14.
- Nielsen, K.A., Hrmova, M., Nielsen, J.N., Forslund, K., Ebert, S., Olsen, C.E., Fincher, G.B. and Møller, B.L. (2006) Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus. Planta, 223, 1010–23.
- Nielsen, K.A., Olsen, C.E., Pontoppidan, K. and Møller, B.L. (2002) Leucine-derived cyano glucosides in barley. Plant Physiol., 129, 1066–75.
- Nielsen, K.A., Tattersall, D.B., Jones, P.R. and Møller, B.L. (2008) Metabolon formation in dhurrin biosynthesis. Phytochemistry, 69, 88–98.
- Noji, M., Murakoshi, L. and Saito, K. (1993) Evidence for identity of β-pyrazolealanine synthase with cysteine synthase in watermelon: formation of beta-pyrazolealanine by cloned cysteine synthase in vitro and in vivo. Biochem. Biophys. Res. Commun., 197, 1111–7.
- Norsworthy, J.K., Malik, M.S., Jha, P. and Riley, M.B. (2007) Suppression of Digitaria sanguinalis and Amaranthus palmeri using autumn-sown glucosinolate-producing cover crops in organically grown bell pepper. Weed Res., 47, 425–32.
- Nye, M.M. (1991) The mis-measure of manioc (Manihot esculenta, Euphorbiaceae). Econ. Bot., 45, 4547–57.
- Ohtsuru, M. and Hata, T. (1973a) Studies on the activation mechanism of the myrosinase methylthioalkylglucosinolates. J. Biol. Chem., 268, 27154–9.
- Ohtsuru, M. and Hata, T. (1973b) Studies on the activation mechanism by l-ascorbic acid. Agric. Biol. Chem., 37, 1971–2.
- Oke, O.L. (1994) Eliminating cyanogens from cassava through processing: technology and tradition. Acta Horticulture, 375, 163–74.
- Olafsdottir, S., Andersen, J.V. and Jaroszewski, J.W. (1989) Cyanohydrin glycosides of Passifloraceae . Phytochemistry, 28, 127–32.
- Oleszek, W. (1995) Glucosinolates: occurrence and ecological significance. Wiadomosci Botaniczne, 39, 49–58.
- Osuntokun, B.O. (1994) Chronic cyanide intoxication of dietary origin and degenerative neuropathy in Nigeria. Acta Horticulture, 375, 61.
- Oxtoby, E., Dunn, M.A., Pancoro, A. and Hughes, M.A. (1991) Nucleotide and derived amino acid sequence of the cyanogenic β-glucosidase (linamarase) from white clover (Trifolium repens L.). Plant Mol. Biol., 17, 209–20.
- Papenbrock, J. and Schmidt, A. (2000) Characterization of a sulfurtransferase from Arabidopsis thaliana . Eur. J. Biochem., 267, 145–54.
- Paquette, S., Møller, B.L. and Bak, S. (2003) On the origin of family 1 plant glycosyltransferases. Phytochemistry, 62, 399–413.
- Parkin, L., Magrath, R., Keith, D., Sharpe, A., Mithen, R. and Lydiate, D. (1994) Genetics of aliphatic glucosinolates. II. Hydroxylation of alkenyl glucosinolates in Brassica napus . Heredity, 72, 594–8.
- Pereira, J.F., Seigler, D.S. and Splttstoesser, W.E. (1981) Cyanogenesis in sweet and bitter cultivars of cassava. Hortscience, 16, 776–7.
- Peterson, P.J. and Fowden, L. (1972) The biosynthesis of l-γ-substituted glutamic acids in Gleditsia triacanthos . Phytochemistry, 11, 663–7.
- Peterson, S.C. (1986) Breakdown products of cyanogenesis repellency and toxicity to predatory ants. Naturwissenchaften, 73, 627–8.
- Pich, A. and Scholz, G. (1993) The relationship between the activity of various iron-containing and iron-free enzymes and the presence of nicotianamine in tomato seedlings. Physiol. Plantarum, 88, 172–8.
- Piotrowski, M., Schemenewitz, A., Lopukhinat, A., Mueller, A., Janowitz, T., Weiler, W.E. and Oecking, C. (2004) Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J. Biol. Chem., 279, 50717–25.
- Pitsch, C., Keller, M., Zinsmeister, H.D. and Nahrstedt, A. (1984) Cyanogenic glycosides from Triticum monococcum . Planta Med., 50, 388–90.
-
Ploeg, A.
(2007)
Biofumigation to manage plant-parasitic nematodes, in
Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes (eds
A. Ciancio and
K.G. Mukerji).
Springer,
the Netherlands, pp.
239–48.
10.1007/978-1-4020-6063-2_12 Google Scholar
- Poulton, J.E. (1988) Localization and catabolism of cyanogenic glucosides, in Cyanide Compounds in Biology (eds D. Everett and S. Harnett). Wiley, Chichester, pp. 67–81.
- Poulton, J.E. (1989) Toxic compounds in foodstuffs: cyanogens, in Food Proteins (eds J.E. Kinsella and W.G. Soucie). American Oil Chemists’ Society, Champaign, IL, pp. 381–401.
- Poulton, J.E. (1990) Cyanogenesis in plants. Plant Physiol., 94, 401–5.
- Poulton, J.E. and Møller, B.L. (1993) Glucosinolates. Methods Plant Biochem., 9, 209–37.
- Poulton, J.E. and Shin, S.I. (1983) Prunasin biosynthesis by cell-free extracts from black cherry (Prunus serotina Ehrh.) fruits and leaves. Z. Naturforsch., 38c, 369–74.
- Pourmohseni, H. and Ibenthal, W.D. (1991) Novel β-glycosides in the epidermal tissue of barley and their possible role in barley-powdery mildew interaction. Angew. Botanik, 65, 341–50.
- Pourmohseni, H., Ibenthal, W.D., Machinek, R., Remberg, G. and Wray, V. (1993) Cyanoglucosides in the epidermis of Hordeum vulgare . Phytochemistry, 33, 295–7.
- Rai, V.K. (2002) Role of amino acids in plant responses to stress. Biol. Plantarum 45, 481–7.
- Rask, L., Andreasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B. and Meijer, J. (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae . Plant Mol. Biol., 42, 93–113.
- Reay, P.F. and Conn, E.E. (1970) Dhurrin synthesis in excised shoots and roots of sorghum seedlings. Phytochemistry, 9, 1825–7.
- Reay, P.F. and Conn, E.E. (1974) The purification and properties of a uridine diphosphate glucose: aldehyde cyanohydrin β-glucosyltransferase from sorghum seedlings. Arch. Biochem. Biophys., 249, 5826–30.
- Reed, D.W., Davin, L., Jain, J.C., Deluca, V., Nelson, L. and Unterhill, E.W. (1993) Purification and properties of UDP-glucose: thiohydroximate glucosyltranserase from Brassica napus (L.) seedlings. Arch. Biochem. Biophys., 305, 526–32.
- Rissler, J.F. and Millar, R.L. (1977) Biochemical evidence for the histochemical localization of linamarase activity in Lotus corniculatus infected with Stemphylium loti . Protoplasma, 92, 57–70.
- Rockenbach, J., Nahrstedt, A. and Wray, V. (1992) Cyanogenic glycosides from Psydrax . Phytochemistry, 31, 567–70.
- Rodman, J.E. (1991) A taxonomic analysis of glucosinolate producing plants, Part 1. Phenetics Syst. Bot., 16, 598–618.
- Rodman, J.E., Karol, K.G., Price, R.A. and Sytsma, K.J. (1996) Molecules, morphology and Dahlgren's expanded order Capparales. Syst. Bot., 21, 289–307.
- Rosenthal, G.A. (1982) Plant Nonprotein Amino Acids and Imino Acids: Biological, Biochemical and Toxicological Properties. Academic Press, New York.
-
Rosenthal, G.A.
(1991)
Nonprotein amino acids, in
Herbivores: Their Interaction with Secondary Plant Metabolites, Vol.
1, The Chemical Participants (eds
G.A. Rosenthal and
M.R. Berenbaum).
Academic Press,
San Diego, pp.
1–34.
10.1016/B978-0-12-597183-6.50006-1 Google Scholar
- Rosenthal, G.A. (1992) Purification and characterization of the higher plant enzyme l-canaline reductase. Acad. Sci. USA, 89, 1780–84.
- Rosenthal, G.A. and Berge, M.A. (1989) Catabolism of l-canavanine and l-canaline in the jack bean, Canavalia ensiformis (L.). J. Agric. Food Chem., 37, 591–5.
- Rosenthal, G.A., Berge, M.A. and Bleiler, J.A. (1989) A novel mechanism for detoxification of l-canaline. Biochem. Syst. Ecol., 17, 203–6.
- Rosenthal, G.A., Berge, M.A., Ozinskas, A.J. and Hughes, C.G. (1988) Ability of l-canavanine to support nitrogen metabolism in the jack bean, Canavalia ensiformis (L.) J. Agric. Food Chem., 36, 1159–63.
- Rosenthal, G.A. and Rhodes, D. (1984) l-Canavanine transport and utilization in developing jack bean, Canavalia ensiformis (Leguminosae). Plant Physiol., 76, 541–4.
- Rosenthaler, L. (1908) Dutch enzyme bewirkte asymetrische synthesen. Biochem. Z., 14, 238–53.
- Rosling, H. (1994) Measuring effects in humans of dietary cyanide exposure from cassava. Acta Hort., 375, 271–83.
- Rossiter, J.T., James, D.C. and Atkins, N. (1990) Biosynthesis of 2-hydroxy-3-butenylglucosinolate and 3-butenylglucosinolate in Brassica napus . Phytochemistry, 29, 2509–12.
- Rossiter, J.T., Jones, A.M. and Bones, A.M. (2003) A novel myrosinase-glucosinolate defense system in cruciferous specialist aphids, in Recent Advances in Phytochemistry: Integrative Phytochemistry: From Ethnobotany to Molecular Ecology (ed. J.T. Romeo). Pergamon, Oxford pp. 127–42.
- Rozan, P., Kuo, Y.-H. and Lambein, F. (2001a) Amino acids in seeds and seedlings of the genus Lens . Phytochemistry, 58, 281–9.
- Rozan, P., Kuo, Y.-H. and Lambein, F. (2001b) Nonprotein amino acids in edible lentil and pea seedlings. Amino Acids, 20, 319–24.
- Saidu, Y. (2004) Physicochemical features of rhodanese: a review. Afr. J. Biotechnol., 3, 370–74.
- Saito, K., Kimura, N., Ikegami, F. and Noji, M. (1997) Production of plant nonprotein amino acids by recombinant enzymes of sequential biosynthetic reactions in bacteria. Biol. Pharm. Bull., 20, 47–53.
- Santamour Jr., F.S. (1998) Amygdalin in Prunus leaves. Phytochemistry, 47, 1537–8.
- Sarwar, M., Kirkegaard, J.A., Wong, P.T.W. and Desmarchelier, J.M. (1998) Biofumigation potential of Brassicas – III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil, 201, 103–12.
- Satya Narayan, V. and Nair, P.M. (1990) Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry, 29, 361–75.
- Saunders, J.A. and Conn, E.E. (1977) Subcellular localization of the cyanogenic glucoside in Sorghum by autoradiography. Plant Physiol., 59, 647–52.
- Saupe, S.G. (1981) Cyanogenic compounds and angiosperm phylogeny, in Phytochemistry and Angiosperm Phylogeny (eds D.A. Young and D.S. Seigler). Praeger, New York, pp. 80–116.
- Schappert, P.J. and Shore, J.S. (1999) Cyanogenesis, herbivory and plant defense in Turnera ulmifolia on Jamaica. Ecoscience, 6, 511–20.
- Schenk, S.U. and Werner, D. (1991) β-(3-isoxazolin-5-on-2-YL)-alanine from Pisum: allelopathic properties and antimycotic bioassay. Phytochemistry, 30, 467–70.
- Schwind, P., Wray, V. and Nahrstedt, A. (1990) Structure elucidation of an acylated cyanogenic triglycoside and further cyanogenic constituents from Xeranthemum cylindraceum . Phytochemistry, 29, 1903–12.
- Schwarz, B., Wray, V. and Proksch, P. (1996) A cyanogenic glycoside from Canthium schimperianum . Phytochemistry, 42, 633–6.
- Seigler, D. (1973) Determination of cyanolipids in seed oils of the Sapindaceae by the means of their NMR spectra. Phytochemistry, 13, 841–3.
-
Seigler, D.S.
(1991)
Cyanide and cyanogenic glycosides, in
Herbivores: Their Interaction with Secondary Plant Metabolites, Vol.
1,
The Chemical Participants (eds
G.A. Rosenthal and
M.R. Berenbaum).
Academic Press,
San Diego, pp.
35–77.
10.1016/B978-0-12-597183-6.50007-3 Google Scholar
- Seigler, D.S., Pauli, G.F., Nahrstedt, A. and Leen, R. (2002) Cyanogenic allosides and glucosides from Passiflora edulis and Carica papaya . Phytochemistry, 60, 873–82.
- Selmar, D. (1991) The cleavage of cyanogenic lipids. Physiol. Plantarum, 83, 63–6.
-
Selmar, D.
(1993a)
Apoplastic occurrence of cyanogenic β-glucosidases and consequences for the metabolism of cyanogenic glucosides, in
The Biochemistry and Molecular Biology of β-Glucosidases (ed.
A. Esen).
American Chemical Society,
Washington, pp.
191–204.
10.1021/bk-1993-0533.ch013 Google Scholar
- Selmar, D. (1993b) Transport of cyanogenic glucosides: linustatin uptake by Hevea cotyledons. Planta, 191, 191–9.
- Selmar, D. (1994) Translocation of cyanogenic glucosides in cassava. Acta Hort., 375, 61–7.
- Selmar, D. (1999) Biosynthesis of cyanogenic glycosides, glucosinolates and non-protein amino acids, in Annual Plant Reviews, Vol. 2: The Role of Secondary Metabolites and Their Utilization in Biotechnology (ed. M. Wink). Sheffield Academic Press, Sheffield, pp. 79–150.
- Selmar, D. (2005) Metabolism and catabolism of glucosinolates. Landbauforschung, 283, 137–48.
- Selmar, D., Grocholewski, S. and Seigler, D.S. (1990) Cyanogenic lipids: utilization during seedling development of Ungnadia speciosa . Plant Physiol., 93, 631–6.
- Selmar, D., Irandoost, S. and Wray, V. (1996) Dhurrin-6′-glucoside, a new cyanogenic diglucoside from Sorghum bicolor (L.). Phytochemistry, 43, 569–72.
- Selmar, D., Lieberei, R. and Biehl, B. (1988) Mobilization and utilization of cyanogenic glycosides: the linustatin pathway. Plant Physiol., 86, 711–6.
- Selmar, D., Lieberei, R., Biehl, B. and Conn, E.E. (1989) α-Hydroxynitrile lyase in Hevea brasiliensis and its significance for rapid cyanogenesis. Physiol. Plantarum, 75, 97–101.
- Selmar, D., Lieberei, R., Biehl, B. and Voigt, J. (1987) Linamarase in Hevea, a nonspecific β-glycosidase. Plant Physiol., 83, 557–63.
- Selmar, D., Lieberei, R., Junqueira, N. and Biehl, B. (1991) Changes in the cyanogenic glucoside content in seeds and seedlings of Hevea species. Phytochemistry, 30, 2135–40.
- Serraj, R., Shelp, B.-J. and Sinclair, T.R. (1998) Accumulation of gamma-aminobutyric acid in nodulated soybean in response to drought stress. Physiol. Plantarum, 102, 79–86.
- Shelp, J., Bown, A.W. and McLean, M.D. (1999) Metabolism and function of gamma-aminobutyric acid. Trends in Plant Sci., 4, 446–52.
- Sibbesen, O., Koch, B., Halkier, B.A. and Møller, B.L. (1994) Isolation of the heme-thiolate enzyme cytochrome P-450-TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside, dhurrin, in Sorghum bicolor (L.). Moench. Proc. Natl. Acad. Sci. USA, 91, 9740–44.
- Sibbesen, O., Koch, B., Halkier, B.A. and Møller, B.L. (1995) Cytochrome P-450-TYR is a multifunctional heme-thiolate enzyme, the conversion of l-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside, dhurrin, in Sorghum bicolor (L.). Moench. J. Biol. Chem., 270, 3506–11.
- Siegrist, J., Orober, M. and Buchenauer, H. (2000) β-Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol. Mol. Plant Pathol., 56, 95–106.
- Siemens, D.H. and Mitchell-Olds, T. (1996) Glucosinolates and herbivory by specialists (Coleoptera: Chrysomelidae; Lepidoptera: Plutellidae): consequences of concentration and induced resistance. Environ. Entomol., 25, 1344–53.
- Siritunga, D., Arias-Garzon, D., White, W. and Sayre R.T. (2004) Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification. Plant Biotechnol. J., 2, 37–43.
- Siritunga, D. and Sayre, R. (2004) Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Plant Mol. Biol., 56, 661–9.
- Snedden, W.A., Arazi, T., Fromm, H. and Shelp, B.J. (1995) Calcium/calmodulin activation of soybean glutamate decarboxylase. Plant Physiol., 108, 543–9.
- Solomonson, L.P. (1981) Cyanide as a metabolic inhibitor, in Cyanide in Biology (eds B. Vennesland, E.E. Conn, C.J. Knowles, J. Westley and F. Wissing). Academic Press, London, pp. 11–28.
-
Sørensen, H.
(1990)
Glucosinolates: structure, properties and function, in
Canola and Rapeseed: Production, Chemistry, Nutrition and Processing Technology (ed.
R. Shahidi).
Van Nostrand Reinhold,
New York, pp.
149–72.
10.1007/978-1-4615-3912-4_9 Google Scholar
- Spencer, K.C. and Seigler, D.S. (1985) Passibiflorin, epipassibiflorin and passitrifasciatin: cyclopentenoid cyanogenic glucosides from Passflora . Phytochemistry, 24, 981–6.
-
Spencer, P.
(1994)
Human consumption of plant material with neurotoxic potential.
Acta Hort.,
375,
341–8.
10.17660/ActaHortic.1994.375.34 Google Scholar
- Spitz, M.R., Duphorne, C.M., Detry, M.A., Pillow, P.C., Amos, C.I., Lei, L., deAndrade, M., Gu, X., Hong, W.K. and Wu, X. (2000) Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol. Biomarkers Prev., 9, 1017–20.
- Srere, P.A. (1985) The metabolon. Trends Biochem. Sci., 10, 109–10.
- Stadler, E. (1978) Chemoreception of host plant chemicals by oviposting females of Delia (Hylema) brassicae . Entomol. Exp. Appl., 24, 711–20.
- Stafford, H.A. (1969) Changes in phenolic compounds content and related enzymes in young plants of Sorghum . Phytochemistry, 8, 743–52.
- Stephan, U.W., Schmidke, I., Stephan, V.W. and Scholz, G. (1996) The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals, 9, 84–90.
- Sundaresan, S., Nambisan, B. and Amma, C.S.F. (1987) Bitterness in cassava in relation to cyanoglucoside content. Ind. J. Agric. Sci., 57, 37–40.
- Swain, E., Li, C.P. and Poulton, J.E. (1992) Tissue and subcellular localization of enzymes catabolizing (R)-amygdalin in mature Prunus serotina seeds. Plant Physiol., 100, 291–300.
- Swain, E. and Poulton, J.E. (1995) Utilization of amygdalin during seedling development of Prunus serotina . Plant Physiol., 106, 437–45.
- Taipalensuu, J., Falk, A. and Rask, L. (1996) A wound- and methyl jasmonate-inducible transcript coding for a myrosinase-associated protein with similarities to an early nodulin. Plant Physiol., 110, 483–91.
- Tapper, B.A. and Butler, G.W. (1971) Oximes, nitriles and 2-hydroxynitriles as precursors in the biosynthesis of cyanogenic glucosides. Biochem. J., 124, 935–41.
- Tattersall, D.B., Bak, S., Jones, P.R., Olsen, C.E., Nielsen, J.K., Hansen, M.L., Høj, P.B. and Møller, B.L. (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science, 293, 1826–8.
- Taylor, N., Chavarriaga, P., Reamakers, K., Siritunga, D. and Zhang, P. (2004) Development and application of transgenic technologies in cassava. Plant Mol. Biol., 56, 671–88.
- Textor, S., de Kraker, J.W., Hause, B., Gershenzon, J. and Tokuhisa, J.G. (2007) MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis . Plant Physiol., 144, 60–71.
- Thangstad, O.P., Evjen, K. and Bones, A. (1991) Immunogold-EM localization of myrosinase in Brassicaceae. Protoplasma, 161, 85–93.
- Thangstad, O.P., Gilde, B., Chadchawan, S., Seem, M., Husebye, H., Bradley, D. and Bones, A.M. (2004) Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum . Plant Mol. Biol., 54, 597–611.
- Thangstad, O.P., Iversen, T.-H., Slupphaug, G. and Bones, A. (1990) Immunocytochemical localization of myrosinase in Brassica napus (L.). Planta, 180, 245–8.
- Thangstad, O.P., Winge, P., Husebye, H. and Bones, A. (1993) The thioglucoside glucohydrolase (myrosinase) gene family in Brassicaceae. Plant Mol. Biol., 23, 511–24.
- Thayer, S.S. and Conn, E.E. (1981) Subcellular localization of dhurrin β-glucosidase and hydroxynitrile lyase in the mesophyll cells of Sorghum leaf blades. Plant Physiol., 67, 617–22.
- Tierens, K., Thomma, B.P.H., Brouwer, M., Schmidt, J., Kistner, K., Porzel, A., Mauch-Mani, B., Cammue, B.P.A. and Broekaert, W.F. (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol., 125, 1688–99.
-
Timonin, M.I.
(1941)
The interaction of higher plants and soil microorganisms. III. Effects of byproducts of plant growth on activity of fungi and actinomycetes.
Soil Sci.,
52,
395–413.
10.1097/00010694-194111000-00007 Google Scholar
- Tookey, H.L. (1973) Crambe thioglucoside glucohydrolase (EC 3.2.3.1): separation of a protein required for epithiobutane formation. Can. J. Biochem., 51, 1654–60.
- Trione, E.J. (1960) The HCN content of flax in relation to flax wilt resistance. Phytopathology, 50, 482–6.
- Trummler, K. and Wajant, H. (1997) A novel class of hydroxynitrile lyases. J. Biol. Chem., 272, 4770–74.
- Tsuruo, I. and Hata, T. (1968) Studies on myrosinase in mustard seeds. Part. 4. Sugars and glucosides as competitive inhibitors. Agric. Biol. Chem., 32, 1420–24.
- Tylleskär, T. (1994) The association between cassava and the paralytic disease, konzo. Acta Hort., 375, 331–9.
- Underhill, E.W. and Chisholm, M.D. (1964) Biosynthesis of mustard oil glucosides. Biochem. Biophys. Res. Commun., 14, 425–30.
- Underhill, E.W., Chisholm, M.D. and Wetter, L.R. (1962) Biosynthesis of mustard oil glucosides: administration of 14C-labelled compounds to horseradish, nasturtium and watercress. Can. J. Biochem. Physiol., 40, 1505–14.
- Underhill, E.W., Wetter, L.R. and Chisholm, M.D. (1973) Biosynthesis of glucosinolates. Biochem. Soc. Symp., 38, 303–26.
- Uribe, E. and Conn, E.E. (1966) The origin of the nitrile nitrogen atom of dhurrin. J. Biol. Chem., 241, 92–4.
-
Van Bel, A.J.E.
(1989)
The challenge of symplastic phloem loading.
Botanica Acta,
102,
183–5.
10.1111/j.1438-8677.1989.tb00091.x Google Scholar
- Van Boven, M., Daenens, P. and Cokelaere, M. (1995) New simmondsin 2′-ferrulates from jojoba meal. J. Agric. Food Chem., 43, 1193–7.
- Van Boven, M., Toppet, S., Cokelaere, M.M. and Daenens, P. (1994) Isolation and structural identification of a new simmondsin ferulate from jojoba meal. J. Agric. Food Chem., 42, 1118–21.
- van Etten, C.H. (1969) Goitrogens, in The Toxic Consituents of Plant Foodstuff (ed. I.E. Leiner). Academic Press, London, pp. 103–42.
- van Etten, C.H., Daxenbichler, M.E., Williams, P.H. and Kwolek, W.F. (1974) Glucosinolates and derived products in cruciferous vegetables: analysis of the edible part from twenty two varieties of cabbage. J. Agric. Food Chem., 24, 452–5.
- van Etten, C.H., McGrew, C.E. and Daxenbichler, M.E. (1976) Glucosinolate determination in cruciferous seeds and meals by means of enzymatically-released glucose. J. Agric. Food Chem., 22, 483–7.
- Vaughn, S.F., Isbell, T.A., Weisleder, D. and Berhow, M.A. (2005) Biofumigant compounds released by field pennycress (Thlaspi arvense) seedmeal. J. Chem. Ecol., 31, 167–77.
- Verhoeven, D.ThH., Verhagen, H., Goldbohm, R.A., Van Den Brandt, P.A. and van Poppel, G. (1997) A review of mechanisms underlying anticarcinogenicity by Brassica vegetables. Chem. Biol. Interact., 103, 79–129.
- Vetter, J. (2000) Plant cyanogenic glycosides. Toxicon, 38, 11–36.
- Vickery, P.J., Wheeler, J.L. and Mulcahy, C. (1987) Factors affecting the hydrogen cyanide potential of white clover (Trifolium repens L.). Aust. J. Agric. Res., 38, 1053–9.
- Wajant, H. and Ellenberger, F. (1996) Hydroxynitrile lyases of higher plants. Biol. Chem., 377, 611–7.
- Wajant, H., Foerster, S., Selmar, D., Effenberger, F. and Pfizenmaier, K. (1995) Purification and characterization of a novel (R)-mandelonitrile lyase from the fern Phlebodium aureum . Plant Physiol., 109, 1231–8.
- Wajant, H., Mundry, K.W. and Pfizenmaier, K. (1994) Molecular cloning of hydroxynitrile lyase from Sorghum bicolor (L.): homologies to serine carboxypeptidases. Plant Mol. Biol., 26, 735–46.
- Wallsgrove, R.M., Doughty, K. and Bennett, R.N. (1998) Glucosinolates, in Plant Amino Acids: Biochemistry and Biotechnology (ed. B. Singh). Dekker, New York, pp. 523–61.
- Wang, L.I., Giovannucci, E.L., Hunter, D., Neuberg, D., Su, L. and Christiani, D.C. (2004) Dietary intake of cruciferous vegetables, glutathione S-transferase (GST) polymorphisms and lung cancer risk in a Caucasian population. Cancer Causes. Control., 15, 977–85.
- Wang, R. and Nicholas, D.J.D. (1985) Some properties of glutamine synthetase and glutamate synthase from Derxia gummosa . Phytochemistry, 24, 1133–40.
- Westley, J. (1981) Cyanide and sulphane sulfur, in Cyanide in Biology (eds B. Vennesland, E.E. Conn, C.J. Knowles, J. Westley and F. Wissing). Academic Press, London, pp. 61–76.
- Wetter, L.R. and Chisholm, M.D. (1968) Sources of sulfur in the thioglucosides of various higher plants. Can. J. Biochem., 46, 931–5.
- Wheat, C.W., Vogel, H., Wittstock, U., Braby, M.F., Underwood, D. and Mitchell-Olds, T. (2007) The genetic basis of a plant–insect coevolutionary key innovation. Proc. Natl. Acad. Sci. U.S.A., 104, 20427–31.
- Wittstock, U. and Halkier, B.A. (2000) Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of l-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J. Biol. Chem., 275, 14659–66.
- Wittstock, U. and Halkier, B.A. (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci., 7, 263–70.
- Wittstock, U., Kliebenstein, D.J., Lambrix, V., Reichelt, M. and Gershenzon, J. (2003) Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores in recent advances, in Phytochemistry: Integrative Phytochemistry: From Ethnobotany to Molecular Ecology (ed. J.T. Romeo). Pergamon, Oxford, pp. 101–25.
-
Wöhler, F. and
Liebig, J.
(1836)
Ueber die bildung des bittermandelöls.
Ann. Pharm.
22,
1–24.
10.1002/jlac.18370220102 Google Scholar
- Wolf, W.J., Schaer, M.L. and Abbott, T.P. (1994) Nonprotein nitrogen content of defatted jojoba meals. J. Sci. Food Agric., 65, 277–88.
- Woodhead, S. and Bernays, E. (1977) Changes in release rates of cyanide in relation to palatability of Sorghum to insects. Nature, 279, 235–6.
- Wurtele, E.S., Thayer, S.S. and Conn, E.E. (1982) Subcellular localization of a UDP-glucose: aldehyde cyanohydrin β-glucosyl transferase in epidermal plastids of Sorghum leaf blades. Plant Physiol., 10, 1732–7.
- Xu, L.L., Singh, B.K. and Conn, E.E. (1988) Purification and characterization of acetone cyanohydrin lyase from Linum usitatissimum . Arch. Biochem. Biophys., 263, 256–64.
- Xu, Z., Escamilla-Trevino, L.L., Zeng, L., Lalgondar, M., Bevan, D.R., Winkel, B., Mohamed, A., Cheng, C.L., Shih, M.C., Poulton, J. and Esen, A. (2004) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol. Biol., 55, 343–67.
- Xue, J., Lenman, M., Falk, A. and Rask, L. (1992) The glucosinolate-degrading enzyme myrosinase in Brassicaceae is encoded by a gene family. Plant Mol. Biol., 18, 387–98.
- Xue, J., Pihlgren, U., Rask, L. (1993) Temporal, cell-specific, and tissue-preferential expression of myrosinase genes during embryo and seedling development in Sinapis alba . Planta, 191, 95–101.
- Yan, X. and Chen, S. (2007) Regulation of plant glucosinolate metabolism. Planta, 226, 1343–52.
- Yang, S.F. and Hoffmann, N.E. (1984) Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol., 35, 155–89.
- Yeoh, H.-H. (1989) Kinetic properties of β-glucosidase from Cassava. Phytochemistry, 28, 721–4.
- Yevtushenko, D.P., McLean, M.D., Peiris, S., VanCauwenberghe, O.R. and Shelp, B.J. (2003) Calcium/calmodulin activation of two divergent glutamate decarboxylases from tobacco. J. Exp. Bot., 54, 2001–2.
- Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol., 38, 1095–102.
- Zagrobelny, M., Bak, S., Rasmussen, A.V., Jørgensen, B., Naumann, C.M. and Møller, B.L. (2004) Cyanogenic glucosides and plant–insect interactions. Phytochemistry, 65, 293–306.
- Zagrobelny, M., Bak, S., Ekstrøm, C.T., Olsen, C.E. and Møller, B.L. (2007) The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Insect Biochem. Mol. Biol., 37, 10–8.
- Zhang, Y., Kensler, T.W., Cho, C.G., Posner, G.H. and Talalay, P. (1994) Anticarcinogenic activities of sulforaphane and structurally-related synthetic norbornylisothiocyanates. Proc. Natl. Acad. Sci. USA, 91, 3147–50.
- Zhang, Z.-Y., Ober, J.A. and Kliebenstein, D.J. (2006) The gene controlling the quantitative trait locus Epithiospecifier modifier 1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis . Plant Cell, 18, 1524–36.
- Zhang, Y. and Talalay, P. (1994) Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res., 54, 19765–81S.
- Zhang, Y., Talalay, P., Cho, C.G. and Posner, G.H. (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl. Acad. Sci. USA, 89, 2399–403.
-
Ziegler, T.,
Hörsch, B. and
Effenberger, F.
(1990)
Ein einfacher Zugang zu (R)-α-Hydroxycarbonsäurenund (R)-1-Amino-2-alkoholen aus (R)-Cyanhydrinen.
Synthesis,
7,
575–8.
10.1055/s-1990-26945 Google Scholar
- Zilg, H. and Conn, E.E. (1974) Stereochemical aspects of lotaustralin biosynthesis. J. Biol. Chem., 249, 3112–5.
Citing Literature
Browse other articles of this reference work: