9 Carbon and Energy Metabolism
Mattias Thelander
Swedish University of Agricultural Sciences, Department of Plant Biology and Forest Genetics, Uppsala, SE-75007 Sweden
Search for more papers by this authorAnders Nilsson
Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, SE-75123 Sweden
Search for more papers by this authorHans Ronne
Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, SE-75123 Sweden
Search for more papers by this authorMattias Thelander
Swedish University of Agricultural Sciences, Department of Plant Biology and Forest Genetics, Uppsala, SE-75007 Sweden
Search for more papers by this authorAnders Nilsson
Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, SE-75123 Sweden
Search for more papers by this authorHans Ronne
Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, SE-75123 Sweden
Search for more papers by this authorAbstract
As in all organisms, the primary carbon metabolism in Physcomitrella patens provides the cells with free energy and building blocks for the biosynthesis of macromolecules. In particular, carbohydrates play a major role in growth and development in mosses as in other plants, since they are used for storage and allocation of carbon and energy. Reverse genetics in P. patens has recently made it possible to address some key questions concerning the carbon and energy metabolism in plants. These questions include: How is the cellular energy status sensed in order to balance anabolism versus catabolism? How does carbon and energy allocation between cells and tissues work? How is whole-plant energy homeostasis maintained? What is the role of sugars in regulating growth and development? And, finally, how similar or different are these processes in bryophytes and vascular plants? The recent release of the complete P. patens genome sequence has now made it possible to address the last question using a comparative genomics approach.
References
- Abel, W.O., Knebel, W., Koop, H.-U. et al. (1989) A cytokinin-sensitive mutant of the moss, Physcomitrella patens, defective in chloroplast division. Protoplasma, 152, 1–13.
- Ashrafi, K., Lin, S.S., Manchester, J.K. and Gordon, J.I. (2000) Sip2p and its partner snf1p kinase affect aging in S. cerevisiae . Genes and Development, 14, 1872–1885.
- Baena-González, E., Rolland, F., Thevelein, J.M. and Sheen, J. (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature, 448, 938–942.
- Baur, J.A., Pearson, K.J., Price, N.L. et al. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444, 337–342.
- Bocock, P.N., Morse, A.M., Dervinis, C. and Davis, J.M. (2008) Evolution and diversity of invertase genes in Populus trichocarpa . Planta, 227 (3), 565–576.
- Boudsocq, M., Droillard, M.J., Barbier-Brygoo, H. and Laurière, C. (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Molecular Biology, 63, 491–503.
- Bouly, J.P., Gissot, L., Lessard, P., Kreis, M. and Thomas, M. (1999) Arabidopsis thaliana homologues of the yeast SIP and SNF4 proteins interact with AKINα1, an SNF1-like protein kinase. Plant Journal, 18, 541–550.
- Büttner, M. (2007) The monosaccharide transporter(-like) gene family in Arabidopsis . FEBS Letters, 581, 2318–2324.
- Cheong, Y.H., Pandey, G.K., Grant, J.J. et al. (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis . Plant Journal, 52, 223–239.
- Cho, J.I., Ryoo, N., Ko, S. et al. (2006a) Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta, 224, 598–611.
- Cho, Y.-H., Yoo, S.-D. and Sheen, J. (2006b) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell, 127, 579–589.
- Claeyssen, E. and Rivoal, J. (2007) Isozymes of plant hexokinase: occurrence, properties and functions. Phytochemistry, 68, 709–731.
- Cook, M.E., Graham, L.E., Botha, C.E.J. and Lavin, C.A. (1997) Comparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmata. American Journal of Botany, 84, 1169–1178.
- Cuming, A.C., Cho, S.H., Kamisugi, Y., Graham, H. and Quatrano, R.S. (2007) Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens . New Phytologist, 176, 275–287.
- Dai, N., German, M.A., Matsevitz, T. et al. (2002) LeFRK2, a gene encoding the major fructokinase in tomato fruits, is not required for starch accumulation in developing fruits. Plant Science, 162, 423–430.
- Damari-Weissler, H., Kandel-Kfir, M., Giodoni, D., Mett, A., Belausov, E. and Granot, D. (2006) Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants. Planta, 224, 1495–1502.
- Davies, H.V., Shepherd, L.V., Burrell, M.M. et al. (2005) Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism. Plant Cell Physiology, 46, 1103–1115.
- Fujii, H., Verslues, P.E. and Zhu, J.K. (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis . Plant Cell, 19, 485–494.
- German, M.A., Asher, I., Petreikov, M., Dai, N., Schaffer, A.A. and Granot, D. (2004) Cloning, expression and characterization of LeFRK3, the fourth tomato (Lycopersicon esculentum Mill.) gene encoding fructokinase. Plant Science, 166, 285–291.
- German, M.A., Dai, N., Chmelnitsky, I. et al. (2002) LeFRK4, a novel tomato (Lycopersicon esculentum Mill.) fructokinase specifically expressed in stamens. Plant Science, 163, 607–613.
- Giese, J.-O., Herbers, K., Hoffmann, M., Klösgen, R.B. and Sonnewald, U. (2005) Isolation and functional characterization of a novel plastidic hexokinase from Nicotiana tabacum . FEBS Letters, 579, 827–831.
- Gissot, L., Polge, C., Bouly, J.P., Lemaitre, T., Kreis, M. and Thomas, M. (2004) AKINbeta3, a plant specific SnRK1 protein, is lacking domains present in yeast and mammals non-catalytic beta-subunits. Plant Molecular Biology, 56, 747–759.
- Gissot, L., Polge, C., Jossier, M. et al. (2006) AKINbetagamma contributes to SnRK1 heterotrimeric complexes and interacts with two proteins implicated in plant pathogen resistance through its KIS/GBD sequence. Plant Physiology, 142, 931–944.
- Graham, L.K. and Wilcox, L.W. (2000) The origin of alternation of generations in land plants: a focus on matrotrophy and hexose transport. Philosophical Transactions of the Royal Society B: Biological Sciences, 355, 757–767.
- Halford, N.G., Hey, S., Jhurreea, D. et al. (2003) Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. Journal of Experimental Botany, 54, 467–475.
- Hallingbäck, T., Lönell, N., Weibull, H., Hedenäs, L. and von Knorring, P. (2006) Nationalnyckeln till Sveriges Flora och Fauna. Bladmossor: Sköldmossor – Blåmossor. Bryophyta: Buxbaumia – Leucobryum. ArtDatabanken, SLU, Uppsala.
- Hardie, D.G. (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology, 8, 774–785.
- Hardie, D.G., Carling, D. and Carlson, M. (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annual Review of Biochemistry, 67, 821–855.
- Harkness, T.A., Shea, K.A., Legrand, C., Brahmania, M. and Davies, G.F. (2004) A functional analysis reveals dependence on the anaphase-promoting complex for prolonged life span in yeast. Genetics, 168, 759–774.
- Hrabak, E.M., Chan, C.W., Gribskov, M. et al. (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiology, 132, 666–680.
- Hudson, E.R., Pan, D.A., James, J. et al. (2003) A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Current Biology, 13, 861–866.
- Jang, J.-C., León, P., Zhou, L. and Sheen, J. (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell, 9, 5–19.
- Jiang, H., Dian, W., Liu, F. and Wu, P. (2003) Isolation and characterization of two fructokinase cDNA clones from rice. Phytochemistry, 62, 47–52.
- Jiang, R. and Carlsson, M. (1997) The Snf1 protein kinase and its activating subunit, Snf4 interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Molecular and Cellular Biology, 17, 2099–2106.
- Johnson, D.A., Hill, J.P. and Thomas, M.A. (2006) The monosaccharide transporter gene family in land plants is ancient and shows differential subfamily expression and expansion across lineages. BMC Evolutionary Biology, 6, 64.
- Kanayama, Y., Granot, D., Dai, N. et al. (1998) Tomato fructokinases exhibit differential expression and substrate regulation. Plant Physiology, 117, 85–90.
- Kandel-Kfir, M., Damari-Weissler, H., German, M.A. et al. (2006) Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization. Planta, 224, 1341–1352.
- Kenrick, P. and Crane, P.R. (1997) The origin and early evolution of plants on land. Nature, 389, 33–39.
- Kim, K.N., Cheong, Y.H., Grant, J.J., Pandey, G.K. and Luan, S. (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis . Plant Cell, 15, 411–423.
- Knight, C.D., Sehgal, A., Atwal, K. et al. (1995) Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell, 7, 499–506.
- Kolukisaoglu, U., Weinl, S., Blazevic, D., Batistic, O. and Kudla, J. (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiology, 134, 43–58.
- Ligrone, R., Duckett, J.G. and Renzaglia, K.S. (2000) Conducting tissues and phyletic relationships of bryophytes. Philosophical Transactions of the Royal Society B: Biological Sciences, 355, 795–813.
- Lin, S.S., Manchester, J.K. and Gordon, J.I. (2003) Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. Journal of Biological Chemistry, 278, 13390–13397.
- Lumbreras, V., Albà, M.M., Kleinow, T., Koncz, C. and Pagès, M. (2001) Domain fusion between SNF1-related kinase subunits during plant evolution. EMBO Reports, 2, 55–60.
- Moore, B., Zhou, L., Rolland, F. et al. (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light and hormonal signaling. Science, 300, 332–336.
- Murayama, S. and Handa, H. (2007) Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta, 225, 1193–1203.
- Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F. and Giraudat, J. (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14, 3089–3099.
- Olsson, T., Thelander, M. and Ronne, H. (2003) A novel type of chloroplast stromal hexokinase is the major glucose phosphorylating enzyme in the moss Physcomitrella patens . The Journal of Biological Chemistry, 278, 44439–44447.
- Pandey, G.K., Cheong, Y.H., Kim, B.G., Grant, J.J., Li, L. and Luan, S. (2007) CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Research, 17, 411–421.
- Pego, J.V., Kortstee, A.J., Huijser, C. and Smeekens, S.C. (2000) Photosynthesis, sugars and the regulation of gene expression. Journal of Experimental Botany, 51, 407–416.
- Pego, J.V. and Smeekens, S.C.M. (2000) Plant fructokinases: a sweet family get-together. Trends in Plant Science, 5, 531–536.
- Petreikov, M., Dai, N., Granot, D. and Schaffer, A.A. (2001) Characterization of native and yeast-expressed tomato fruit fructokinase enzymes. Phytochemistry, 58, 841–847.
- Polekhina, G., Gupta, A., Michell, B.J. et al. (2003) AMPK beta subunit targets metabolic stress sensing to glycogen. Current Biology, 13, 867–871.
- Reinhart, D.A. and Thomas, R.J. (1981) Sucrose uptake and transport in conducting cells of Polytrichum commune . The Bryologist, 84, 59–64.
- Rensing, S.A., Lang, D., Zimmer, A.D. et al. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 319, 64–69.
- Rine, J. (2005) Twists in the tale of aging yeast. Science, 310, 24–25.
- Roitsch, T. and González, M.C. (2004) Function and regulation of plant invertases: sweet sensations. Trends in Plant Science, 9, 606–613.
- Rolland, F., Beana-Gonzalez, E. and Sheen, J. (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology, 57, 675–709.
- Rolland, F., Winderickx, J. and Thevelein, J.M. (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Research, 2, 183–201.
- Rosnoblet, C., Aubry, C., Leprince, O., Vu, B.L., Rogniaux, H. and Buitink, J. (2007) The regulatory gamma subunit SNF4b of the sucrose non-fermenting-related kinase complex is involved in longevity and stachyose accumulation during maturation of Medicago truncatula seeds. Plant Journal, 51, 47–59.
- Sakakibara, K., Nishiyama, T., Sumikawa, N., Kofuji, R., Murata, T. and Hasebe, M. (2003) Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens . Development, 130, 4835–4846.
- Salerno, G.L. and Curatti, L. (2003) Origin of sucrose metabolism in higher plants: when, how and why? Trends in Plant Science, 8, 63–69.
- Sanders, D., Pelloux, J., Brownlee, C. and Harper, J.F. (2002) Calcium at the crossroads of signaling. Plant Cell, 14, S401–S417.
- Sauer, N. (2007) Molecular physiology of higher plant sucrose transporters. FEBS Letters, 581, 2309–2317.
- Sherson, S.M., Alford, H.L., Forbes, S.M., Wallace, G. and Smith, S.M. (2003) Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis . Journal of Experimental Botany, 54, 525–531.
- Sherson, S.M., Hemmann, G., Wallace, G. et al. (2000) Monosaccharide/proton symporter AtSTP1 plays a major role in uptake and response of Arabidopsis seeds and seedlings to sugars. Plant Journal, 24, 849–857.
- Sturm, A. and Chrispeels, M.J. (1990) cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell, 2, 1107–1119.
- Thelander, M., Nilsson, A., Olsson, T. et al. (2007) The moss genes PpSKI1 and PpSKI2 encode nuclear SnRK1 interacting proteins with homologues in vascular plants. Plant Molecular Biology, 64, 559–573.
- Thelander, M., Olsson, T. and Ronne, H. (2004) Snf1-related protein kinase 1 is needed for growth in a normal day-night light cycle. The EMBO Journal, 23, 1900–1910.
- Thelander, M., Olsson, T. and Ronne, H. (2005) Effect of the energy supply on filamentous growth and development in Physcomitrella patens . Journal of Experimental Botany, 56, 653–662.
- Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.
- Umezawa, T., Yoshida, R., Maruyama, K., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana . Proceedings of the National Academy of Sciences of the United States of America, 101, 17306–17311.
- Vargas, W., Cumino, A. and Salerno, G.L. (2003) Cyanobacterial alkaline/neutral invertases. Origin of sucrose hydrolysis in the plant cytosol? Planta, 216, 951–960.
- Vincent, O., Townley, R., Kuchin, S. and Carlson, M. (2001) Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes and Development, 15, 1104–1114.
- Wang, W., Yang, X., Lopez de Silanes, L., Carling, D. and Gorospe, M. (2003) Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senenscence linked to reduced HuR function. Journal of Biological Chemistry, 278, 27016–27023.
- Warden, S.M., Richardson, C., O'Donnell, J. Jr., Stapleton, D., Kemp, B.E. and Witters, L.A. (2001) Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochemical Journal, 354, 275–283.
- Weber, H., Borisjuk, L. and Wobus, U. (1997) Sugar import and metabolism during seed development. Trends in Plant Science, 2, 169–174.
- Wiatrowski, H.A., Van Denderen, B.J., Berkey, C.D., Kemp, B.E., Stapleton, D. and Carlson, M. (2004) Mutations in the gal83 glycogen-binding domain activate the snf1/gal83 kinase pathway by a glycogen-independent mechanism. Molecular and Cellular Biology, 24, 352–361.
- Wiencke, C and Schulz, D. (1983) The fine structural basis of symplasmic and apoplasmic transport in the ‘nerve’ of the Funaria leaflet. Zeitschrift fur Pflanzenphysiologie, 112, 337–350.
- Zhu, J.K. (2003) Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6, 441–445.
Browse other articles of this reference work: