Neural and Cognitive Plasticity
Eduardo Mercado III
State University of New York Buffalo, Buffalo, New York, USA
Search for more papers by this authorEduardo Mercado III
State University of New York Buffalo, Buffalo, New York, USA
Search for more papers by this authorAbstract
Modern humans spend much of their early lives participating in formal educational programs designed to increase their cognitive competencies. Despite this concerted effort to maximize individuals intellectual capacities, scientists and educators know relatively little about the neural factors that determine when and how learning experiences lead to improvements in cognitive abilities. Current theories of how brains are changed by learning focus on incremental adjustments to connections between neurons that are driven by increases in neural activity. This article summarizes past theoretical and experimental research on the relationship between neural plasticity and experience-dependent changes in cognition, briefly describes recent technological advances in measuring and inducing brain plasticity mechanisms, and outlines key questions that researchers must address to provide a more complete understanding of the factors that enable people to learn new cognitive skills. Answering such questions will require the combined efforts of neuroscientists, psychologists, and educational researchers, as well as the development of new technologies for monitoring neural changes in humans and other animals as they learn to perform a variety of cognitive tasks.
References
- Abraham, W. C. (2008). Metaplasticity: Tuning synapses and networks for plasticity. Nature Reviews Neuroscience, 9, 387. doi:10.1038/nrn2356
- Andrasfalvy, B. K., Zemelman, B. V., Tang, J., & Vaziri, A. (2010). Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proceedings of the National Academy of Sciences, USA, 107, 11981–11986. doi:10.1073/pnas.1006620107
- Baltes, P. B. (1987). Theoretical propositions of life-span developmental psychology: On the dynamics between growth and decline. Developmental Psychology, 23, 611–626.
- Bernstein, J. G., & Boyden, E. S. (2011). Optogenetic tools for analyzing the neural circuits of behavior. Trends in Cognitve Sciences, 15, 592–600. doi:10.1016/j.tics.2011.10.003
- Bischof, H. J. (1983). Imprinting and cortical plasticity: A comparative review. Neuroscience and Biobehavioral Reviews, 7, 213–225.
- Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.
- Butterworth, B., & Walsh, V. (2011). Neural basis of mathematical cognition. Current Biology, 21, R618–621. doi:10.1016/j.cub.2011.07.005
- Cappelletti, M., Gessaroli, E., Hithersay, R., Mitolo, M., Didino, D., Kanai, R., …, Walsh, V. (2013). Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. Journal of Neuroscience, 33, 14899–14907. doi:10.1523/JNEUROSCI.1692-13.2013
- Chein, J. M., & Schneider, W. (2005). Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Brain Research: Cognitive Brain Research, 25, 607–623. doi:10.1016/j.cogbrainres.2005.08.013
- de Villers-Sidani, E., Simpson, K. L., Lu, Y. F., Lin, R. C., & Merzenich, M. M. (2008). Manipulating critical period closure across different sectors of the primary auditory cortex. Nature Neuroscience, 11, 957–965. doi:10.1038/nn.2144
- DeFelipe, J. (2006). Brain plasticity and mental processes: Cajal again. Nature Reviews Neuroscience, 7, 811–817. doi:10.1038/nrn2005
- Dovgopoly, A., & Mercado, E., III (2013). A connectionist model of category learning by individuals with high-functioning autism spectrum disorder. Cognitive, Affective, and Behavioral Neuroscience, 13, 371–389. doi:10.3758/s13415-012-0148-0
- Duffy, K. R., & Mitchell, D. E. (2013). Darkness alters maturation of visual cortex and promotes fast recovery from monocular deprivation. Current Biology, 23, 382–386. doi:10.1016/j.cub.2013.01.017
- Ellis, R. J., Norton, A. C., Overy, K., Winner, E., Alsop, D. C., & Schlaug, G. (2012). Differentiating maturational and training influences on fMRI activation during music processing. Neuroimage, 60, 1902–1912. doi:10.1016/j.neuroimage.2012.01.138
- Fenno, L., Yizhar, O., & Deisseroth, K. (2011). The development and application of optogenetics. Annual Review of Neuroscience, 34, 389–412. doi:10.1146/annurev-neuro-061010-113817
- Gibson, E. J., & Walk, R. D. (1956). The effect of prolonged exposure to visually presented patterns on learning to discriminate them. Journal of Comparative and Physiological Psychology, 49, 239–242.
- Globus, A., Rosenzweig, M. R., Bennett, E. L., & Diamond, M. C. (1973). Effects of differential experience on dendritic spine counts in rat cerebral cortex. Journal of Comparative and Physiological Psychology, 82, 175–181.
- Greely, H., Sahakian, B., Harris, J., Kessler, R. C., Gazzaniga, M., Campbell, P., & Farah, M. J. (2008). Towards responsible use of cognitive-enhancing drugs by the healthy. Nature, 456, 702–705. doi:10.1038/456702a
- Greenough, W. T., West, R. W., & DeVoogd, T. J. (1978). Subsynaptic plate perforations: Changes with age and experience in the rat. Science, 202, 1096–1098.
- Greenwood, P. M., & Parasuraman, R. (2010). Neuronal and cognitive plasticity: A neurocognitive framework for ameliorating cognitive aging. Frontiers in Aging Neuroscience, 2, 150. doi:10.3389/fnagi.2010.00150
-
Hall, G. (1991). Perceptual and associative learning. New York, NY: Oxford University Press.
10.1093/acprof:oso/9780198521822.001.0001 Google Scholar
- He, H. Y., Hodos, W., & Quinlan, E. M. (2006). Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. Journal of Neuroscience, 26, 2951–2955. doi:10.1523/JNEUROSCI.5554-05.2006
- Hebb, D. O. (1949). The organization of behavior. New York, NY: Wiley.
- Hensch, T. K. (2004). Critical period regulation. Annual Review of Neuroscience, 27, 549–579. doi:10.1146/annurev.neuro.27.070203.144327
- Holtmaat, A., Randall, J., & Cane, M. (2013). Optical imaging of structural and functional synaptic plasticity in vivo . European Journal of Pharmacology, 719, 128–136. doi:10.1016/j.ejphar.2013.07.020
- Hooks, B. M., & Chen, C. (2007). Critical periods in the visual system: Changing views for a model of experience-dependent plasticity. Neuron, 56, 312–326. doi:10.1016/j.neuron.2007.10.003
- Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M., & Pralle, A. (2010). Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nature Nanotechnology, 5, 602–606. doi:10.1038/nnano.2010.125
- Hubel, D. H., & Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology, 206, 419–436.
- Hulme, S. R., Jones, O. D., & Abraham, W. C. (2013). Emerging roles of metaplasticity in behaviour and disease. Trends in Neuroscience, 36, 353–362. doi:10.1016/j.tins.2013.03.007
- Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstatter, F., Benke, T., Felber, S., & Delazer, M. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. Neuroimage, 30, 1365–1375. doi:10.1016/j.neuroimage.2005.11.016
- James, W. (1890). The principles of psychology. New York, NY: Dover.
- Kadosh, R. C., Levy, N., O'Shea, J., Shea, N., & Savulescu, J. (2012). The neuroethics of non-invasive brain stimulation. Current Biology, 22, R108–R111.
- Kandel, E. R., & Schwartz, J. H. (1982). Molecular biology of learning: Modulation of transmitter release. Science, 218, 433–443.
- Knott, G., & Holtmaat, A. (2008). Dendritic spine plasticity—Current understanding from in vivo studies. Brain Research Reviews, 58, 282–289. doi:10.1016/j.brainresrev.2008.01.002
-
Lorenz, K. (1937). Imprinting. Auk, 54, 245–273.
10.2307/4078077 Google Scholar
- Lovden, M., Wenger, E., Martensson, J., Lindenberger, U., & Backman, L. (2013). Structural brain plasticity in adult learning and development. Neuroscience and Biobehavioral Reviews, 37, 2296–2310. doi:10.1016/j.neubiorev.2013.02.014
- Mercado, E., III (2008). Neural and cognitive plasticity: From maps to minds. Psychological Bulletin, 134, 109–137. doi:10.1037/0033-2909.134.1.109
- Merzenich, M. M., Kaas, J. H., Wall, J., Nelson, R. J., Sur, M., & Felleman, D. (1983). Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience, 8, 33–55.
-
Pavlov, I. P. (1927). Conditioned reflexes. London, England: Oxford University Press.
10.3109/00016482709120085 Google Scholar
- Pinel, P., & Dehaene, S. (2013). Genetic and environmental contributions to brain activation during calculation. Neuroimage, 81, 306–316. doi:10.1016/j.neuroimage.2013.04.118
- Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A., & Dinse, H. R. (1992). Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency-discrimination task. Journal of Neurophysiology, 67, 1031–1056.
- Rosenzweig, M. R. (1984). Experience, memory, and the brain. American Psychologist, 39, 365–376.
- Schultheis, C., Liewald, J. F., Bamberg, E., Nagel, G., & Gottschalk, A. (2011). Optogenetic long-term manipulation of behavior and animal development. PLoS One, 6, e18766. doi:10.1371/journal.pone.0018766
- Sehgal, M., Song, C., Ehlers, V. L., & Moyer, J. R., Jr. (2013). Learning to learn — Intrinsic plasticity as a metaplasticity mechanism for memory formation. Neurobiology of Learning and Memory, 105, 186–199. doi:10.1016/j.nlm.2013.07.008
- Smith, K. S., & Graybiel, A. M. (2013). Using optogenetics to study habits. Brain Research, 1511, 102–114. doi:10.1016/j.brainres.2013.01.008
- Smith, M. E., & Farah, M. J. (2011). Are prescription stimulants “smart pills”? The epidemiology and cognitive neuroscience of prescription stimulant use by normal healthy individuals. Psychological Bulletin, 137(5), 717–741. doi:10.1037/a0023825
- Stahnisch, F. W., & Nitsch, R. (2002). Santiago Ramón y Cajal's concept of neuronal plasticity: The ambiguity lives on. Trends in Neuroscience, 25, 589–591.
- Taub, E. (1980). Somatosensory deafferentation research with monkeys: Implications for rehabilitation medicine. In L. P. Ince (Ed.), Behavioral psychology in rehabilitation medicine: Clinical applications (pp. 371–401). New York, NY: Williams & Wilkins.
- Taub, E., Uswatte, G., & Elbert, T. (2002). New treatments in neurorehabilitation founded on basic research. Nature Reviews Neuroscience, 3, 228–236. doi:10.1038/nrn754
- Thompson, R. F. (1965). The neural basis of stimulus generalization. In D. I. Mostofsky (Ed.), Stimulus generalization (pp. 154–178). Stanford, CA: Stanford University Press.
- Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6, 767–773. doi:10.1038/nn1065
- Weinberger, N. M., & Diamond, D. M. (1987). Physiological plasticity in auditory cortex: Rapid induction by learning. Progress in Neurobiology, 29, 1–55.
- Welcome, S. E., Chiarello, C., Thompson, P. M., & Sowell, E. R. (2011). Reading skill is related to individual differences in brain structure in college students. Human Brain Mapping, 32, 1194–1205. doi:10.1002/hbm.21101
- Zhou, X., Panizzutti, R., de Villers-Sidani, E., Madeira, C., & Merzenich, M. M. (2011). Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. Joural of Neuroscience, 31, 5625–5634. doi:10.1523/JNEUROSCI.6470-10.2011
Further Reading
- Ganguly, K., & Poo, M. M. (2013). Activity-dependent neural plasticity from bench to bedside. Neuron, 80, 729–741. doi:10.1016/j.neuron.2013.10.028
- Li, S.-C. (2013). Neuromodulation and developmental contextual influences on neural and cognitive plasticity across the lifespan. Neuroscience and Biobehavioral Reviews, 37, 2201–2208. doi:10.1016/j.neubiorev.2013.07.019
- Mercado, E., III (2011). Mapping individual variations in learning capacity. International Journal of Comparative Psychology, 24, 4–35.
- Merzenich, M. M. (2013). Soft-wired: How the new science of brain plasticity can change your life. San Francisco, CA: Parnassus Publishing.
Browse other articles of this reference work: