How Form Constrains Function in the Human Brain
Timothy D. Verstynen
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
Search for more papers by this authorTimothy D. Verstynen
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
Search for more papers by this authorAbstract
In neural systems, form and function are intimately linked; the communication dynamics across networked areas depends on the organization and integrity of the connections between them (i.e., axons and tracts). With the growth of diffusion-weighted imaging (DWI) and fiber tractography tools over the past decade, it has become possible to visualize the physical architecture of the human brain at an unprecedented resolution. This information has provided the first glimpses into the component circuitry supporting cognition, presenting a unique opportunity for cognitive neuroscientists. For the first time we can visualize the connections in the living brain, allowing us to measure individual differences in anatomical connectivity, relate this connectivity to brain function, and gain insights into the link between white matter architecture and behavior. In many ways, this technology is still in its infancy and its full potential has not yet been realized. Here, I outline the importance of understanding neuroanatomical connectivity as a hard constraint on neural computation. Beginning with an overview of the typical patterns of connectivity seen in neural systems, I go on to show how current neuroimaging tools can visualize several different types of connectivity in the brain. By highlighting recent findings showing how neuroanatomical organization and brain function are related during cognitive tasks, I emphasize the utility that structural brain mapping approaches can have for the broader social and behavioral sciences.
References
- Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., & Laval-Jeantet, M. (1985). MR Imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Raidology, 161(2), 401–407.
- Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging, 13(4), 534–546. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11276097
- Bock, A. S., Saenz, M., Tungaraza, R., Boynton, G. M., Bridge, H., & Fine, I. (2013). Visual callosal topography in the absence of retinal input. NeuroImage, 81, 325–334. doi:10.1016/j.neuroimage.2013.05.038
- Bolzenius, J. D., Laidlaw, D. H., Cabeen, R. P., Conturo, T. E., McMichael, A. R., Lane, E. M., …, Paul, R. H. (2013). Impact of body mass index on neuronal fiber bundle lengths among healthy older adults. Brain Imaging and Behavior, 7(3), 300–306. doi:10.1007/s11682-013-9230-7
- Budde, M. D., Xie, M., Cross, A. H., & Song, S. (2009). Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: A quantitative pixelwise analysis. The Journal of Neuroscience, 29(9), 2805–2813. doi:10.1523/JNEUROSCI.4605-08.2009
- Bullmore, E. T., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. doi:10.1038/nrn2575
- Catani, M., Dell'acqua, F., Vergani, F., Malik, F., Hodge, H., Roy, P., …, Thiebaut de Schotten, M. (2012). Short frontal lobe connections of the human brain. Cortex, 48(2), 273–291. doi:10.1016/j.cortex.2011.12.001
- Catani, M., Mesulam, M. M., Jakobsen, E., Malik, F., Martersteck, A., Wieneke, C., …, Rogalski, E. (2013). A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain, 136, 2619–2628. doi:10.1093/brain/awt163
- Crick, F., & Jones, E. (1993). Backwardness of human neuroanatomy. Nature, 361, 109–110.
- Deneve, S., Latham, P. E., & Pouget, A. (1999). Reading population codes: A neural implementation of ideal observers. Nature Neuroscience, 2(8), 740–745. doi:10.1038/11205
- Deneve, S., Latham, P. E., & Pouget, A. (2001). Efficient computation and cue integration with noisy population codes. Nature Neuroscience, 4(8), 826–831. doi:10.1038/90541
- Denève, S., Duhamel, J.-R., & Pouget, A. (2007). Optimal sensorimotor integration in recurrent cortical networks: A neural implementation of Kalman filters. The Journal of Neuroscience, 27(21), 5744–5756. doi:10.1523/JNEUROSCI.3985-06.2007
- Deneve, S., Pouget, A., & Latham, P. E. (1999). Divisive normalization, line attractor networks and ideal observers. Advances in Neural Processing Systems, 11, 104–110.
- Dyrba, M., Ewers, M., Wegrzyn, M., Kilimann, I., Plant, C., Oswald, A., …, Teipel, S. J. (2013). Robust automated detection of microstructural white matter degeneration in Alzheimer's disease using machine learning classification of multicenter DTI data. PLoS One, 8(5), e64925. doi:10.1371/journal.pone.0064925
- Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1822724
-
Gianaros, P. J., Marsland, A. L., Sheu, L. K., Erickson, K. I., & Verstynen, T. D. (2012). Inflammatory pathways link socioeconomic inequalities to white matter architecture. Cerebral Cortex, 1–14. doi:10.1093/cercor/bhs191
10.1093/cercor/bhs191 Google Scholar
- Greenberg, A. S., Verstynen, T. D., Chiu, Y.-C., Yantis, S., Schneider, W., & Behrmann, M. (2012). Visuotopic cortical connectivity underlying attention revealed with white-matter tractography. The Journal of Neuroscience, 32(8), 2773–2782. doi:10.1523/JNEUROSCI.5419-11.2012
- Griffa, A., Baumann, P. S., Thiran, J. P., & Hagmann, P. (2013 October 15). Structural connectomics in brain diseases. Neuroimage, 80, 515–526. doi:10.1016/j.neuroimage.2013.04.056
- Hagmann, P., Jonasson, L., Maeder, P., Thiran, J., Wedeen, V. J., & Meuli, R. (2006). Understanding diffusion MR imaging techniques: From scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics, 26, –S205.
- Hübers, A., Klein, J., Kang, J., Hilker, R., & Ziemann, U. (2012). The relationship between TMS measures of functional properties and DTI measures of microstructure of the corticospinal tract. Brain Stimulation, 5(3), 297–304.
- Huisman, T. a G. M., Schwamm, L. H., Schaefer, P. W., Koroshetz, W. J., Shetty-Alva, N., Ozsunar, Y., …, Sorensen, a G. (2004). Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. American Journal of Neuroradiology, 25(3), 370–376. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15037457
- Jbabdi, S., & Johansen-Berg, H. (2011). Tractography: Where do we go from here? Brain Connectivity, 1(3), 169–183. doi:10.1089/brain.2011.0033
- Jbabdi, S., Sotiropoulos, S. N., & Behrens, T. E. J. (2013). The topographic connectome. Current Opinion in Neurobiology, 23(2), 207–215. doi:10.1016/j.conb.2012.12.004
- Jones, D. K., & Cercignani, M. (2010). Twenty-five pitfalls in the analysis of diffusion MRI data. NMR in Biomedicine, 23(7), 803–820. doi:10.1002/nbm.1543
- Keller, T. A., & Just, M. A. (2009). Altering cortical connectivity: Remediation-induced changes in the white matter of poor readers. Neuron, 64(5), 624–631. doi:10.1016/j.neuron.2009.10.018.Altering
- Klawiter, E. C., Schmidt, R. E., Trinkaus, K., Liang, H.-F., Budde, M. D., Naismith, R. T., …, Benzinger, T. L. (2011). Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. NeuroImage, 55(4), 1454–1460. doi:10.1016/j.neuroimage.2011.01.007
- Leergaard, T. B., Hilgetag, C. C., & Sporns, O. (2012). Mapping the connectome: Multi-level analysis of brain connectivity. Frontiers in Neuroinformatics, 6(May), 14. doi:10.3389/fninf.2012.00014
- Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438. doi:10.1038/nn1790
- Makris, N., Papadimitriou, G. M., Kaiser, J., Sorg, S., Kennedy, D. N., & Pandya, D. N. (2009). Delineation of the middle longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex, 19(4), 777–785. doi:10.1093/cercor/bhn124
- Moseley, M. E., Cohen, Y., Kucharczyk, J., Mintorovitch, J., Asgari, H. S., Wendland, M. F., …, Norman, D. (1990). Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology, 176(2), 439–445.
- Mueller, K., Anwander, A., Möller, H. E., Horstmann, A., Lepsien, J., Busse, F. P., …, Pleger, B. (2011). Sex-dependent influences of obesity on cerebral white matter investigated by diffusion-tensor imaging. PLoS One, 6(4), e18544. doi:10.1371/journal.pone.0018544
- Passingham, R. E., Stephan, K. E., & Kötter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3(8), 606–616. doi:10.1038/nrn893
- Saenz, M., & Fine, I. (2010). Topographic organization of V1 projections through the corpus callosum in humans. NeuroImage, 52(4), 1224–1229. doi:10.1016/j.neuroimage.2010.05.060
- Sampaio-Baptista, C., Khrapitchev, A. a, Foxley, S., Schlagheck, T., Scholz, J., Jbabdi, S., …, Johansen-Berg, H. (2013). Motor skill learning induces changes in white matter microstructure and myelination. The Journal of Neuroscience, 33(50), 19499–19503. doi:10.1523/JNEUROSCI.3048-13.2013
- Saygin, Z. M., Osher, D. E., Koldewyn, K., Reynolds, G., Gabrieli, J. D., & Saxe, R. R. (2011). Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nature Neuroscience, 15(2), 321–327. doi:10.1038/nn.3001
- Schlerf, J. E., Verstynen, T. D., Ivry, R. C., & Spencer, R. M. C. (2010). Evidence of a novel somatopic map in the human neocerebellum during complex actions. Journal of Neurophysiology, 103(6), 3330–3336. doi:10.1152/jn.01117.2009
- Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. (2009). Training induces changes in white-matter architecture. Nature Neuroscience, 12(11), 1370–1371. doi:10.1038/nn.2412
- Song, S.-K., Yoshino, J., Le, T. Q., Lin, S.-J., Sun, S.-W., Cross, A. H., & Armstrong, R. C. (2005). Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage, 26(1), 132–140. doi:10.1016/j.neuroimage.2005.01.028
- Sporns, O. (2013). Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23(2), 162–171. doi:10.1016/j.conb.2012.11.015
- Stanek, K. M., Grieve, S. M., Brickman, A. M., Korgaonkar, M. S., Paul, R. H., Cohen, R., & Gunstad, J. J. (2011). Obesity is associated with reduced white matter integrity in otherwise healthy adults. Obesity, 19(3), 500–504. doi:10.1038/oby.2010.312
- Thivierge, J.-P., & Marcus, G. F. (2007). The topographic brain: From neural connectivity to cognition. Trends in Neurosciences, 30(6), 251–259. doi:10.1016/j.tins.2007.04.004
- Verstynen, T. D., Badre, D., Jarbo, K., & Schneider, W. (2012). Microstructural organizational patterns in the human corticostriatal system. Journal of Neurophysiology, 107(11), 2984–2995. doi:10.1152/jn.00995.2011
- Verstynen, T. D., Jarbo, K., Pathak, S., & Schneider, W. (2011). In vivo mapping of microstructural somatotopies in the human corticospinal pathways. Journal of Neurophysiology, 105, 336–346. doi:10.1152/jn.00698.2010
- Verstynen, T. D., & Sabes, P. N. (2011). How each movement changes the next: An experimental and theoretical study of fast adaptive priors in reaching. The Journal of Neuroscience, 31(27), 10050–10059. doi:10.1523/JNEUROSCI.6525-10.2011
- Verstynen, T. D., Weinstein, A. M., Erickson, K. I., Sheu, L. K., Marsland, A. L., & Gianaros, P. J. (2013). Competing physiological pathways link individual differences in weight and abdominal adiposity to white matter microstructure. NeuroImage, 79, 129–137.
- Verstynen, T. D., Weinstein, A. M., Schneider, W. W., Jakicic, J. M., Rofey, D. L., & Erickson, K. I. (2012). Increased body mass index is associated with a global and distributed decrease in white matter microstructural integrity. Psychosomatic Medicine, 74(7), 682–690. doi:10.1097/PSY.0b013e318261909c
- Wang, Y., Fernández-Miranda, J. C., Verstynen, T. D., Pathak, S., Schneider, W., & Yeh, F.-C. (2012). Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cerebral Cortex, 23(10), 2347–2356. doi:10.1093/cercor/bhs225
- Wu, S., & Amari, S. (2005). Computing with continuous attractors: Stability and online aspects. Neural Computation, 17(10), 2215–2239. doi:10.1162/0899766054615626
- Wu, S., Amari, S.-I., & Nakahara, H. (2002). Population coding and decoding in a neural field: A computational study. Neural Computation, 14(5), 999–1026. doi:10.1162/089976602753633367
- Wu, S., Chen, D., Niranjan, M., & Amari, S. (2003). Sequential Bayesian decoding with a population of neurons. Neural Computation, 15(5), 993–1012. doi:10.1162/089976603765202631
- Yeh, F.-C., & Tseng, W.-Y. I. (2011). NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. NeuroImage, 58(1), 91–99. doi:10.1016/j.neuroimage.2011.06.021
- Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B. (2013). Spurious group differences due to head motion in a diffusion MRI study. NeuroImage. doi:10.1016/j.neuroimage.2013.11.027
Citing Literature
Browse other articles of this reference work: