Myoelectric Control of Powered Upper-Limb Prostheses
Kevin Englehart
University of New Brunswick, Institute of Biomedical Engineering, New Brunswick, Canada
Search for more papers by this authorBernard Hudgins
University of New Brunswick, Institute of Biomedical Engineering, New Brunswick, Canada
Search for more papers by this authorGreg Bush
University of New Brunswick, Institute of Biomedical Engineering, New Brunswick, Canada
Search for more papers by this authorKevin Englehart
University of New Brunswick, Institute of Biomedical Engineering, New Brunswick, Canada
Search for more papers by this authorBernard Hudgins
University of New Brunswick, Institute of Biomedical Engineering, New Brunswick, Canada
Search for more papers by this authorGreg Bush
University of New Brunswick, Institute of Biomedical Engineering, New Brunswick, Canada
Search for more papers by this authorAbstract
The surface myoelectric signal has found many important applications in research and clinical application. Its use as a system input for the control of powered upper-limb prostheses was first proposed almost 60 years ago. This control approach, referred to as myoelectric control, has been a clinically significant option for limb-deficient individuals for 30 years. Myoelectric control has gained widespread use, with many fitting centers worldwide. The sophistication of myoelectric control continues to improve, offering users improvements in dexterity and ease of use.
Bibliography
- 1R. Reiter, Eine neu elecktrokunstand. Grenzgebiete der Medicin 1948; 1(4): 133–135.
- 2N. Berger and C. R. Huppert, The use of electrical and mechanical forces for control of an electric prosthesis. Am. J. Occu. Ther. 1952; 6: 110.
- 3C. K. Battye, A. Nightengale, and J. Whillis, The use of myo-electric current in the operation of prostheses. J. Bone Joint Surg. 1955; 37-B: 506.
- 4A. E. Kobrinski et al., Problems of bioelectric control. In: J. F. Coles, ed., Automatic and Remote Control. Proc. 1st IFAC Int. Cong., Vol. 2. Boston, MA: Butterworths, 1960, p. 619.
- 5A. H. Bottomley, Working model of a myoelectric control system. Proc. International Symposium of Applications in Automatic Control in Prosthetics Design, Belgrade, 1962: 37.
- 6P. Herberts, Myoelectric signals in control of prostheses. Acta. Orthop. Scandinavica 1969; Suppl: 124.
- 7I. Kato, E. Okazaki, and H. Nakamura, The electrically controlled hand prosthesis using command disc or EMG. J. Soc. Inst. Control Eng. 1967; 6: 236.
- 8G. Weltman, H. Groth, and J. Lyman, An analysis of bioelectric prosthesis control. Biotechnology Laboratory Rep. No. 1, University of California, Los Angeles, 1959.
- 9D. S. Dorcas and R. N. Scott, A three-state myoelectric control. Med. Biol. Eng. 1966; 4: 367.
- 10A. H. Bottomley, Design considerations for a prosthetic prehension device. Proc. International Symposium on External Control of Human Extremities, Dubrovnik, Yugoslavia, 1966: 82–84.
- 11D. S. Childress, Closed-loop control in prosthetic systems: historical perspective. Ann. Biomed. Eng. 1980; 9: 293–303.
- 12D. S. Childress and J. N. Billock, Self-containment and self-suspension of externally powered prostheses for the forearm. Bull. Prosth. Res. 1970; 10-14: 4–21.
- 13H. Schmidl, The I.N.A.I.L. experience fitting upper-limb dysmelia patients with myoelectric control. Bull. Prosth. Res. 1977; 10-27: 17–42.
- 14R. W. Wirta, D. R. Taylor, and F. R. Finley, Pattern recognition arm prosthesis: a historical perspective - Final Report. Bull. Prosth. Res. 1978; 10-30: 8–35.
- 15I. Kato, et al., Multifunctional myoelectric hand prosthesis with pressure sensory feedback system - WASEDA Hand - 4P. Proc. 3rd International Symposium on External Control of Human Extremities, Dubrovnik, Yugoslavia, 1969: 155–170.
- 16R. W. Mann, Cybernetic limb prosthesis: the ALZA distinguished lecture. Ann. Biomed. Eng. 1981; 9: 1–43.
- 17T. W. Williams, Clinical applications of the improved Boston Arm. Proc. Conference on Energy Devices in Rehabilitation, Tufts University, Boston, MA, 1976.
- 18S. Jacobsen, D. Knutti, R. Johnson, and H. Sears, Development of the Utah arm. IEEE Trans. Biomed. Eng. 1982; 29(4): 249–269.
- 19R. J. Feeny and I. Hagaeus, Evaluation of the EMG-controlled hand prosthesis. Proc. 3rd Int. Symp. on External Control of Human Extremities, ETAN, Dubrovnik, Yugoslavia, 1970.
- 20R. Soerjanto, On the application of the myoelectric hand-prosthesis in the Netherlands. Ph. D. Thesis. Report 1.1, 59-3, Institute of Medical Physics, TNO, Utrect, 1971.
- 21H. Schmidl, Funktionelle möglichkeiten bei einseitig und beidseitig amputierten, mit mioelektrischen prosthesen ausgestattet. Sensible informationsrückmeldung bei blinden doppelamputierten. Proc. 1st Int. Congr. on Prosthetics Techniques and Functional and Functional Rehabilitation, 2, Wien, 1973.
- 22N. I. Kondraschin, Ya. S. Yakoson, and L. M. Voskobojnikova, Stand und perspektiven der entwicklung des bioelektrischen steuerungssystems bei der prothesenversorgung der oberen extremitäten in der UdSSR. Orthopädie-Technik 1975; 26: 4.
- 23M. D. Northmore-Ball, H. Heger, and G. A. Hunter, The below-elbow prosthesis. J. Bone Joint Surg. 1980; 62B: 363.
- 24D. Atkins, W. H. Donovan, and A. Muilenberg, Retrospective analysis of 87 children and adults fitted with electric prosthetic componentry. Assoc. Children's Prosthetic-Orthotic Clinics Conf., St. Petersburg, FL, 1993: 4.
- 25R. W. Mann, Force and position proprioception for prostheses. In: P. Herberts, P. Kadefors, R. Magnusson, and I. Petersen, eds., The Control of Upper Extremity Prostheses and Orthoses. Springfield, IL: Thomas, 1974, pp. 201–209.
- 26M. Solomonow, J. Lyman, and A. Freedy, Electrotactile two-point discrimination as a function of frequency, body site, laterality and stimulation codes. Ann. Biomed. Eng. 1977; 5: 47–60.
- 27E. Taub, P. Perella, and G. Barro, Behavioral development after forelimb deafferentiation on day of birth in monkeys with and without blinding. Science 1973; 181: 959–960.
- 28A. Pollit and E. Bizzi, Characteristics of motor programs underlying arm movements in monkeys. J. Neurophysiol. 1976; 39: 435–444.
- 29P. H. Greene, Problems of organization of motor systems. In: R. Rosen and F. Snell, eds., Progress in Theoretical Biology, vol. 2, New York: Academic Press, 1972, pp. 303–338.
10.1016/B978-0-12-543102-6.50013-3 Google Scholar
- 30D. S. Childress, A myoelectric three-state controller using rate sensitivity. Proc. 8th ICMBE, Chicago, IL; 1969: S4–S5.
- 31H. Schmidl, Funktionelle möglichkeiten bei einseitig und beidseitig amputierten, mit mioelektrischen prosthesen ausgestattet. Sensible informationsrückmeldung bei blinden doppelamputierten. Proc. 1st Int. Congr. on Prosthetics Techniques and Functional and Functional Rehabilitation, 2, Wien, 1973.
- 32P. Herberts, C. Almstrom, R. Kadefors, and P. Lawrence, Prosthesis control via myoelectric patterns. Acta Orthopaedica Scandinavica 1973; 44: 389–409.
- 33R. W. Wirta, D. R. Taylor, and F. R. Finley, Engineering principles in the control of external power by myoelectric signals. Arch. Phys. Med. Rehabil. 1969; May: 294–296.
- 34S. C. Jacobsen and R. W. Mann, Control systems for artificial arms. IEEE Conference on Systems, Man and Cybernetics, November 5–7, Boston, MA, 1973.
- 35A. Freedy, J. Lyman, and M. Solomonow, A microcomputer aided prosthesis control. Second International Conference on the Theory and Practice of Robots and Manipulators, Warsaw, Poland, September, 1976: 110–122.
- 36P. J. Cordo, Controlling multiple degree of freedom powered prostheses. Proceedings of the IEEE Frontiers of Engineering and Computing in Health Care, Columbus, OH, 1983:1.5.1–1.5.5.
- 37R. R. Finley and R. W. Wirta, Myocoder studies of multiple myocoder response. Arch. Phys. Med. Rehabil. 1967; 48: 598.
- 38P. Lawrence, P. Herberts, and R. Kadefors, Experiences with a multifunctional hand prosthesis controlled by myoelectric patterns. In: Gavrilovic and Wilson, eds., Advances in External Control of Human Extremities, Etan, Belgrade, 1973, pp. 47–65.
- 39J. H. Lyman, A. Freedy, and R. Prior, Fundamental and applied research related to the design and development of upper-limb externally powered prostheses. Bull. Prosth. Res. 1976; Spring: 184–195.
- 40M. Kelly and P. A. Parker, The application of neural networks to myoelectric signal analysis: a preliminary study. IEEE Trans. Biomed. Eng. 1990; 37(3): 221–230.
- 41B. S. Hudgins, P. A. Parker, and R. N. Scott, A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 1993; 40(1): 82–94.
- 42P. J. Gallant, An approach to myoelectric control using a self-organizing neural network for feature extraction. Master's Thesis, Queens University, Kingston, Ontario, 1993.
- 43K. Englehart, B. Hudgins, P. A. Parker, and M. Stevenson, Classification of the myoelectric signal using time-frequency based representations. Med. Eng. Physics, Special Issue: Intell. Data Analysis Electromyogr. Electroneurogr. 1999; 21: 431–438.
- 44K. Farry, I. D. Walker, and R. G. Baraniuk, Myoelectric teleoperation of a complex robotic hand. IEEE Trans. Robot. Automat. 1996; 12(5): 775–788.
- 45S. Leowinata, B. Hudgins, and P. A. Parker, A multifunction myoelectric control strategy using an array of electrodes. 16th Annual Congress of the International Society Electrophysiology and Kinesiology, Montreal, P.Q., Canada, 1998.
- 46R. F. ff. Weir and A. B. Ajiboye, A multifunction prosthesis controller based on fuzzy-logic techniques. Proceedings of the 25th Silver Anniversary International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Cancun, Mexico, September 17–21, 2003.
- 47B. Hudgins, K. Englehart, P. A. Parker, and R. N. Scott, A microprocessor-based multifunction myoelectric control system. 23rd Canadian Medical and Biological Engineering Society Conference, Toronto, Canada, May, 1997.