Cell Patterning
Luisa Filipponi
Swinburne University of Technology, Industrial Research Institute Swinburne, Hawthorn, Australia
Search for more papers by this authorDan Nicolau
Swinburne University of Technology, Industrial Research Institute Swinburne, Hawthorn, Australia
Search for more papers by this authorLuisa Filipponi
Swinburne University of Technology, Industrial Research Institute Swinburne, Hawthorn, Australia
Search for more papers by this authorDan Nicolau
Swinburne University of Technology, Industrial Research Institute Swinburne, Hawthorn, Australia
Search for more papers by this authorAbstract
Cell patterning comprises a set of techniques used to create organized spatial cellular patterns on surfaces. The selectivity of cell attachment is most commonly controlled by using classic and new microfabrication technologies, such as photolithography and soft-lithography, respectively, to create microscale patterns having cell adhesion-specific chemistry and topography. Different surfaces, such as patterns of polymers, proteins, and adhesive-promoting peptides, have been used as well as different planar and profiled geometries. It is also possible to deposit cells directly on surfaces through various “direct write” approaches. The increasing need to produce patterns of cells having in vivo-like functionalities is motivating attempts to build three-dimensional cellular patterns where the interaction of cells with the surrounding environment, including other cells, can be precisely and predictably controlled with micro- and even nano-scale precision.
Bibliography
- 1T. A. Desai, Micro- and nanoscale structures for tissue engineering constructs. Med. Engineer. Phys. 2000; 22: 595–606.
- 2T. H. Park and M. L. Shuler, Review: integration of cell culture and microfabrication technology. Biotechnol. Progr. 2003; 19: 243–253.
- 3V. Vogel and G. Baneyx, The tissue engineering puzzle: a molecular prospective. Ann. Rev. Biomed. Engineer. 2003; 5: 441–463.
- 4R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, and P. F. Nealey, Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999; 20: 573–588.
- 5R. Singhvi, A. Kumar, G. P. Lopez, G. Stephanopoulos, D. I. C. Wang, G. M. Whitesides, and D. E. Ingber, Engineering cell shape and function. Science 1994; 264: 696–698.
- 6C. S. Chen, M. Mrksich, G. M. Whitesides, and D. E. Ingber, Geometric control of cell life and death. Science 1997; 276: 1425–1428.
- 7M. J. Dalby, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, Polymer-demixed nanotopography: control of fibroblast spreading and proliferation. Tissue Engineer. 2002; 8: 1099–1108.
- 8M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed., Boca Raton, FL: CRC Press, 2002.
10.1201/9781482274004 Google Scholar
- 9J. Voldman, M. L. Gray, and M. A. Schmidt, Microfabrication in biology and medicine. Annu. Rev. Biomed. Eng. 1999; 1: 401–425.
- 10G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001; 3: 335–373.
- 11R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Patterning protein and cells using soft lithography. Biomaterials 1999; 20: 2363–2376.
- 12R. O. Hynes, Integrins: versatility, modulation and signaling in cell adhesion. Cell 1992; 69: 11–25.
- 13S. B. Carter, Haptotactic islands: a method of confining single cells to study individual cell reactions and clone formation. Experiment. Cell Res. 1967; 48: 189–193.
- 14P. C. Letourneau, Cell-to-substratum adhesion and guidance of axonal elongation. Development. Biol. 1975; 44: 92–101.
- 15A. Folch and M. Toner, Microengineering of cellular interactions. Annu. Rev. Biomed. Eng. 2000; 2: 227–256.
- 16T. Matsuda and T. Sugawara, Control of cell adhesion, migration and orientation on photochemically microprocessed surfaces. J. Biomed. Mater. Res. 1996; 32: 165–173.
10.1002/(SICI)1097-4636(199610)32:2<165::AID-JBM3>3.0.CO;2-R CAS PubMed Web of Science® Google Scholar
- 17D. V. Nicolau, T. Taguchi, H. Taniguchi, H. Tanigawa, and S. Yoshikawa, Patterning neuronal and glia cells on light-assisted functionalised photoresists. Biosens. Bioelectron. 1999; 14: 317–325.
- 18W. He, K. Gonsalves, and C. Halberstadt, Lithography application of a novel photoresist for patterning of cells. Biomaterials 2004; 25: 2055–2063.
- 19A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly. Boston, MA: Academic Press, 1991.
- 20D. Kleinfeld, K. H. Kahler, and P. E. Hockberger, Controlled outgrowth of dissociated neurons on patterned substrates. J. Neurosci. 1988; 8: 4098–4120.
- 21C. S. Dulcey, J. H. Georger, V. Krauthamer, D. A. Stenger, T. L. Fare, and J. M. Calvert, Deep UV photochemistry of chemisorbed monolayers: patterned coplanar molecular assemblies. Science 1991; 252: 551–554.
- 22D. A. Stenger, J. H. Georger, C. S. Dulcey, J. J. Hickman, A. S. Rudolph, T. B. Nielsen, S. M. McCort, and J. M. Calvert, Coplanar molecular assemblies of amino- and perfluorinated alkylsilanes: characterization and geometric definition of mammalian cell adhesion and growth. J. Am. Chem. Soc. 1992; 114: 8435–8442.
- 23S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, Use of thiol-terminated silanes and heterobifunctional cross linkers for immobilization of antibodies on silica surfaces. Anal. Biochem. 1989; 178: 408–413.
- 24G. P. Lopez, H. A. Biebuyck, R. Härter, A. Kumar, and G. M. Whitesides, Fabrication of two-dimensional patterns of proteins adsorbed on self-assembled monolayers by scanning electron microscopy. J. Am. Chem. Soc. 1993; 115: 10774–10781.
- 25M. Mrksich, A surface chemistry approach to studying cell adhesion. Chemical Society Reviews 2000; 29: 267–273.
- 26J. A. Hammarback, S. L. Palm, and P. C. Letourneau, Guidance of neurite outgrowth by pathways of substratum-adsorbed laminin. J. Neurosci. Res. 1985; 13: 213–220.
- 27J. M. Corey, B. C. Wheeler, and G. J. Brewer, Compliance of hippocampal neurons to patterned substrate networks. J. Neurosci. Res. 1991; 30: 300–307.
- 28P. Clark, S. Britland, and P. Connolly, Growth cone guidance and neuron morphology on micropatterned laminin surfaces. J. Cell Sci. 1993; 105: 203–212.
- 29K. L. Hanson, L. Filipponi, and D. V. Nicolau, Biomolecules and cells on surfaces: fundamental concepts. In: U. R. Müller and D. V. Nicolau (eds), Microarray Technology and its Applications. New York: Springer, 2005, pp. 22–23.
- 30T. Matsuda, T. Sugawara, and K. Inoue, Two-dimensional cell manipulation technology: an artificial neural circuit based on surface microphotoprocessing. ASAIO Trans. 1992; 38: M243–M247.
- 31Y. Ito, Surface micropatterning to regulate cell functions. Biomaterials 1999; 20: 2333–2342.
- 32E. Rouslahti and M. D. Pierschbacher, New prospectives in cell adhesion: RGD and integrins. Science 1987; 238: 491–497.
- 33S. P. Massia and J. A. Hubbell, Covalent surface immobilization of Arg-Gly-Asp and Tyr-Ile-Gly-Ser-Arg containing peptides to obtain well-defined cell-adhesive substrates. Analyt. Biochem. 1990; 187: 292–301.
- 34M. Matsuzawa, P. Liesi, and W. Knoll, Chemically modifying glass surfaces to study substratum-guided neurite outgrowth in culture. J. Neurosci. Meth. 1996; 69: 189–196.
- 35D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials 2001; 22: 1035–1047.
- 36B. C. Wheeler, J. M. Corey, G. J. Brewer, and D. W. Branch, Microcontact printing for precise control of nerve cell growth in culture. J. Biomechan. Engineer. 1999; 121: 73–78.
- 37H. Thissen, J. P. Hayes, P. Kingshott, G. Johnson, E. C. Harvey, and H. J. Grisser, Nanometer thickness laser ablation for spatial control of cell attachment. Smart Mater. Struct. 2002; 11: 792–799.
- 38P. M. St. John, R. Davis, N. Cady, J. Czajka, C. A. Matt, and H. G. Craighead, Diffraction-based cell detection using a microcontact printed antibody grating. Analyt. Chem. 1998; 70: 1108–1111.
- 39R. J. Klebe, Cytoscribing: A method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Experiment. Cell Res. 1988; 179: 362–373.
- 40D. B. Chrisey, R. A. Pique’, R. A. McGill, J. S. Horwitz and B. R. Ringeisen, Laser deposition of polymer and biomaterial films. Chem. Rev. 2003; 103: 553–576.
- 41B. R. Ringeisen, H. Kim, J. Barron, D. B. Krizman, D. B. Chrisey, S. Jackman, R. Y. C. Auyeung, and J. Spargo, Laser printing of pluripotent embryonal carcinoma cells. Tissue Engineer. 2004; 10: 483–491.
- 42E. Ostuni, R. Kane, S. Chen, D. E. Ingber, and G. M. Whitesides, Patterning mammalian cells using elastomeric membranes. Langmuir 2000; 16: 7811–7819.
- 43A. Folch and M. Toner, Cellular micropatterns on biocompatible materials. Biotechnol. Prog. 1998; 14: 388–392.
- 44D. T. Chiu, N. L. Jeon, S. Huang, C. J. Wargo, I. S. Choi, D. E. Ingber, and G. M. Whitesides, Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. PNAS 2000; 97: 2408–2413.
- 45P. Weiss, Cell contact. Int. Rev. Cytol. 1958; 7: 391–423.
- 46R. Singhvi, G. Stephanopoulos, and D. I. C. Wang, Review: effects of substratum morphology on cell physiology. Biotechnol. Bioengineer. 1994; 43: 764–771.
- 47D. M. Brunette, Spreading and orientation of epithelial cells on grooved substrata. Experiment. Cell Res. 1986; 167: 203–217.
- 48P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, Topographical control of cell behavior: II. Multiple grooved substrata. Development 1990; 108: 635–644.
- 49C. Oakley and D. M. Brunette, The sequence of alignment of microtubules, focal contacts and actin filaments spreading on smooth and grooved titanium substrata. J. Cell Sci. 1993; 106: 343–354.
- 50D. M. Brunette, Fibroblast on micromachined substrata orient hierarchically to grooves of different dimensions. Experiment. Cell Res. 1986; 164: 11–26.
- 51S. Britland, H. Morgan, B. Wojiak-Stodart, M. Riehle, A. Curtis, and C. Wilkinson, Synergistic and hierarchical adhesive and topographic guidance of BHK cells. Experiment. Cell Res. 1996; 228: 313–325.
- 52M. Mrksich, C. S. Chen, Y. Xia, L. E. Dike, and D. E. Ingber, Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc. Natl. Acad. Sci. USA 1996; 93: 10775–10778.
- 53S. Takayama, E. Ostuni, X. Qian, J. C. McDonald, X. Jiang, P. LeDuc, M-H. Wu, D. E. Ingber, and G. M. Whitesides, Topographical micropatterning of poly(dimethylsiloxane) using laminar flows of liquids in capillaries. Adv. Mater. 2001; 13: 570–574.
- 54A. Curtis and C. Wilkinson, Topographical control of cells (Review). Biomaterials 1997; 18: 1573–1583.
- 55P. Clark, P. Connolly, and A. Curtis, Cell guidance by ultrafine topography in vitro. J. Cell Sci. 1991; 99: 73–77.
- 56B. Wojciak-Stothard, A. Curtis, W. Monaghan, K. McDonald, and C. Wilkinson, Guidance and activation of murine macrophages by nanometric scale topography. Experiment. Cell Res. 1996; 223: 426–435.
- 57K-B. Lee, S-J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich, Protein nanoarrays generated by dip-pen nanolithography. Science 2002; 295: 1702–1705.
- 58C. D. W. Wilkinson, A. S. G. Curtis, and J. Crossan, Nanofabrication in cellular engineering. J. Vac. Sci. Technol. B 1998; 16: 3132–3136.
- 59M. J. Dalby, S. J. Yarwood, M. O. Riehle, H. J. H. Johnston, S. Affrossman, and A. S. G. Curtis, Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm high polymer demixed islands. Experiment. Cell Res. 2002; 276: 1–9.
- 60A. Abbott, Biology's new dimension. Nature 2003; 424: 870–872.
- 61X-M. Zhao, Y. Xia, and G. M. Whitesides, Fabrication of three-dimensional micro-structures: microtransfer molding. Adv. Mater. 1996; 8: 837–840.
- 62V. A. Liu and S. N. Bhatia, Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdev. 2002; 4: 257–266.
- 63M. D. Tang, A. P. Golden, and J. Tien, Molding of three-dimensional microstructures of gels. J. Am. Chem. Soc. 2003; 125: 12988–12989.
- 64J. D. Snyder and T. A. Desai, Microscale three-dimensional polymeric platforms for in vitro cell culture systems. J. Biomater. Sci. Polymer Ed. 2001; 12: 921–932.
- 65W. Tan and T. A. Desai, Microfluidic patterning of cells in extracellular matrix biopolymers:effects of channel size, cell type, and matrix composition on pattern integrity. Tissue Engineer. 2003; 9: 255–267.
- 66M. A. Nandkumar, M. Yamato, A. Kushida, C. Konno, M. Hirose, A. Kikuchi, and T. Okano, Two-dimensional cell sheet manipulation of heterotypically co-cultures lung cells utilizing temperature-responsive culture dishes results in long-term maintenance of differentiated epithelial cell functions. Biomaterials 2002; 23: 1121–1130.
- 67S. E. Sakiyama and J. A. Hubbell, Functional biomaterials: design of novel biomaterials. Annu. Rev. Mater. Res. 2001; 31: 183–201.
- 68M. N. Yousaf, B. T. Houseman, and M. Mrksich, Turning on cell migration with electroactive substrates. Angewandte Chemie Int. Ed. 2001; 40: 1093–1096.
10.1002/1521-3773(20010316)40:6<1093::AID-ANIE10930>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 69X. Jiang, R. Ferrigno, M. Mrksich, and G. M. Whitesides, Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. J. Am. Chem. Soc. 2003; 125: 2366–2367.
- 70S. N. Bhatia, M. L. Yarmush, and M. Toner, Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J. Biomed. Mater. Res. 1997; 34: 189–199.
10.1002/(SICI)1097-4636(199702)34:2<189::AID-JBM8>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 71S. N. Bhatia, U. J. Balis, M. L. Yarmush, and M. Toner, Microfabrication of hepatocyte/fibroblast co-cultures: role of hemotypic cell interactions. Biotechnol. Progr. 1998; 14: 378–387.
- 72M. N. Yousaf, B. T. Houseman, and M. Mrksich, Using electroactive substrates to pattern the attachment of two different cell populations. PNAS 2001; 98: 5992–5996.
- 73M. Matsuzawa, T. Tabata, W. Knoll, and M. Kano, Formation of hippocampal synapses on patterned substrates of a laminin-derived synthetic peptide. Eur. J. Neurosci. 2000; 12: 903–910.
- 74M. P. Maher, J. Pine, J. Wright, and Y-C. Tai, The neurochip: a new multielectrode device for simulating and recording from cultured neurons. J. Neurosci. Meth. 1999; 87: 45–56.
- 75S. Takayama, J. C. McDonald, E. Ostuni, M. N. Liang, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc. Natl. Acad. Sci. USA 1999; 96: 5545–5548.
- 76S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, Generation of gradients having complex shapes using microfluidic networks. Analyt. Biochem. 2001; 73: 1240–1246.
- 77S. K. W. Dertinger, X. Jiang, V. N. Murthy, and G. M. Whitesides, Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl. Acad. Sci. USA 2002; 99: 12542–12547.
- 78S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides, Subcellular positioning of small molecules. Nature 2001; 411: 1016.