Temporomandibular Joint Disc
Kyle D. Allen
Rice University, Department of Bioengineering, Houston, Texas
Search for more papers by this authorMichael S. Detamore
Rice University, Department of Bioengineering, Houston, Texas
Search for more papers by this authorAlejandro J. Almarza
Rice University, Department of Bioengineering, Houston, Texas
Search for more papers by this authorMark Wong
University of Texas - Health Science Center, Department of Oral and Maxillofacial Surgery, Houston, Texas
Search for more papers by this authorKyriacos A. Athanasiou
Rice University, Department of Bioengineering, Houston, Texas
University of Texas - Health Science Center, Department of Oral and Maxillofacial Surgery, Houston, Texas
Search for more papers by this authorKyle D. Allen
Rice University, Department of Bioengineering, Houston, Texas
Search for more papers by this authorMichael S. Detamore
Rice University, Department of Bioengineering, Houston, Texas
Search for more papers by this authorAlejandro J. Almarza
Rice University, Department of Bioengineering, Houston, Texas
Search for more papers by this authorMark Wong
University of Texas - Health Science Center, Department of Oral and Maxillofacial Surgery, Houston, Texas
Search for more papers by this authorKyriacos A. Athanasiou
Rice University, Department of Bioengineering, Houston, Texas
University of Texas - Health Science Center, Department of Oral and Maxillofacial Surgery, Houston, Texas
Search for more papers by this authorAbstract
The temporomandibular joint (TMJ) is a ginglymo-diarthrodial synovial joint. Its principal components are the fossa-eminence of temporal bone, the mandibular condyle, and a fibrocartilagenous articular disc known as the TMJ disc. TMJ movements are more complex than most synovial joints. The TMJ disc plays a key role in these movements by distributing load, absorbing shock, and lubricating surfaces. The extracellular matrix (ECM) of the TMJ disc is primarily composed of collagen type I, which forms a ring-like structure around the periphery of the disc and in the anteroposterior direction in the intermediate zone. Glycosaminoglycans, proteoglycans, and elastin fibers also form the ECM. The cell types of the disc include a nonhomogeneous distribution of fibroblasts and chondrocyte-like cells; these cells serve to maintain the ECM of the TMJ disc. The mechanical properties of the disc are mostly unknown because of large variations between animal models and test methodologies; however, it is believed that the TMJ disc is primarily a tensile tissue. Several disorders, including internal derangements, degenerative diseases, and reparative/osteogenic diseases, are associated with an injured or displaced disc. These disorders affect about 2–4% of the population and greatly reduce the quality of a patient's life, afflicting everyday activities such as eating, talking, and laughing. Treatments for severe temporomandibular dysfunction are available, but alleviation of joint problems without future repercussions is difficult. Biomedical engineering continues to work toward better solutions for temporomandibular dysfunction by developing innovative treatments and fully characterizing the components and diseases of the TMJ.
Bibliography
- 1L. A. Rees, The structure and function of the mandibular joint. Br. Dent. J 1954; 96: 125–133.
- 2M. S. Detamore and K. A. Athanasiou, Motivation, characterization and strategy for tissue engineering the temporomandibular joint disc. Tissue Eng 2003; 9: 1065–1087.
- 3M. Beek, M. P. Aarnts, J. H. Koolstra, A. J. Feilzer, and T. M. van Eijden, Dynamic properties of the human temporomandibular joint disc. J. Dent. Res. 2001; 80: 876–880.
- 4M. F. Dolwick, The temporomandibular joint: normal and abnormal anatomy. In: C. A. Helms, R. W. Katzberg, and M. F. Dolwick eds., Internal Derangements of the Temporomandibular Joint San Francisco, CA: Radiology Research and Education Foundation, 1983.
- 5E. DeBrul, The Craniomandibular Articulation. St. Louis, MO: The C. V. Mosby CO, 1980.
- 6T. Wilkinson and E. K. Chan, The anatomic relationship of the insertion of the superior lateral pterygoid muscle to the articular disc in the temporomandibular joint of human cadavers. Aust. Dent. J. 1989; 34: 315–322.
- 7G. V. Gillbe, The function of the disc of the temporomandibular joint. J. Prosthet. Dent. 1975; 33: 196–204.
- 8J. W. Osborn, The disc of the human temporomandibular joint: design, function and failure. J. Oral Rehabil. 1985; 12: 279–293.
- 9N. G. Maroudas, On the low adhesiveness of fluid phospholipid substrata. J. Theor. Biol. 1979; 79: 101–116.
- 10B. K. Berkovitz and J. Pacy, Age changes in the cells of the intra-articular disc of the temporomandibular joints of rats and marmosets. Arch. Oral Biol. 2000; 45: 987–995.
- 11R. Landesberg, E. Takeuchi, and J. E. Puzas, Cellular, biochemical and molecular characterization of the bovine temporomandibular joint disc. Arch. Oral Biol. 1996; 41: 761–767.
- 12S. B. Milam, R. J. Klebe, R. G. Triplett, and D. Herbert, Characterization of the extracellular matrix of the primate temporomandibular joint. J. Oral Maxillofac. Surg. 1991; 49: 381–391.
- 13D. K. Mills, D. J. Fiandaca, and R. P. Scapino, Morphologic, microscopic, and immunohistochemical investigations into the function of the primate TMJ disc. J. Orofac. Pain. 1994; 8: 136–154.
- 14A. M. Ali and M. M. Sharawy, An immunohistochemical study of collagen types III, VI and IX in rabbit craniomandibular joint tissues following surgical induction of anterior disk displacement. J. Oral Pathol. Med. 1996; 25: 78–85.
- 15G. E. Kempson, M. A. Tuke, J. T. Dingle, A. J. Barrett, and P. H. Horsfield, The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage. Biochim. Biophys. Acta. 1976; 428: 741–760.
- 16A. M. Minarelli, M. Del Santo, Jr., and E. A. Liberti, The structure of the human temporomandibular joint disc: a scanning electron microscopy study. J. Orofac. Pain. 1997; 11: 95–100.
- 17A. M. Minarelli and E. A. Liberti, A microscopic survey of the human temporomandibular joint disc. J. Oral Rehabil. 1997; 24: 835–840.
- 18R. P. Scapino, P. B. Canham, H. M. Finlay, and D. K. Mills, The behaviour of collagen fibres in stress relaxation and stress distribution in the jaw-joint disc of rabbits. Arch. Oral Biol. 1996; 41: 1039–1052.
- 19T. Shengyi and X. Yinghua, Biomechanical properties and collagen fiber orientation of TMJ discs in dogs: Part 1. Gross anatomy and collagen fiber orientation of the discs. J. Craniomandib. Disord. 1991; 5: 28–34.
- 20B. K. Berkovitz and H. Robertshaw, Ultrastructural quantification of collagen in the articular disc of the temporomandibular joint of the rabbit. Arch. Oral Biol. 1993; 38: 91–95.
- 21T. Nakano and P. G. Scott, A quantitative chemical study of glycosaminoglycans in the articular disc of the bovine temporomandibular joint. Arch. Oral Biol. 1989; 34: 749–757.
- 22J. P. Gage, A. S. Virdi, J. T. Triffitt, C. R. Howlett, and M. J. Francis, Presence of type III collagen in disc attachments of human temporomandibular joints. Arch. Oral Biol. 1990; 35: 283–288.
- 23J. P. Gage, R. M. Shaw, and F. B. Moloney, Collagen type in dysfunctional temporomandibular joint disks. J. Prosthet. Dent 1995; 74: 517–520.
- 24D. A. Keith, Elastin in the bovine mandibular joint. Arch. Oral Biol. 1979; 24: 211–215.
- 25A. Gross, A. Bumann, and B. Hoffmeister, Elastic fibers in the human temporo-mandibular joint disc. Int. J. Oral Maxillofac. Surg. 1999; 28: 464–468.
- 26S. Axelsson, A. Holmlund, and A. Hjerpe, Glycosaminoglycans in normal and osteoarthrotic human temporomandibular joint disks. Acta. Odontol. Scand 1992; 50: 113–119.
- 27I. Mizoguchi, P. G. Scott, C. M. Dodd, F. Rahemtulla, Y. Sasano, M. Kuwabara, S. Satoh, S. Saitoh, Y. Hatakeyama, M. Kagayama, and H. Mitani, An immunohistochemical study of the localization of biglycan, decorin and large chondroitin-sulphate proteoglycan in adult rat temporomandibular joint disc. Arch. Oral Biol. 1998; 43: 889–898.
- 28S. Kopp, Topographical distribution of sulphated glycosaminoglycans in human temporomandibular joint disks. A histochemical study of an autopsy material. J. Oral Pathol. 1976; 5: 265–276.
- 29T. Nakano and P. G. Scott, Changes in the chemical composition of the bovine temporomandibular joint disc with age. Arch. Oral Biol. 1996; 41: 845–853.
- 30B. J. Sindelar, S. P. Evanko, T. Alonzo, S. W. Herring, and T. Wight, Effects of intraoral splint wear on proteoglycans in the temporomandibular joint disc. Arch. Biochem. Biophys. 2000; 379: 64–70.
- 31T. Kuboki, M. Shinoda, M. G. Orsini, and A. Yamashita, Viscoelastic properties of the pig temporomandibular joint articular soft tissues of the condyle and disc. J. Dent. Res. 1997; 76: 1760–1769.
- 32M. G. Fontenot, The viscoelasticity of human temporomandibular joint discs. Am. J. Phys. Anthropol. 1985; 66: 168–169.
- 33M. S. Detamore and K. A. Athanasiou, Structure and function of the TMJ disc: implications for tissue engineering. J. Oral Maxillofac. Surg., 2003; 61: 494–506.
- 34K. Tanne, E. Tanaka, and M. Sakuda, The elastic modulus of the temporomandibular joint disc from adult dogs. J. Dent. Res. 1991; 70: 1545–1548.
- 35M. S. Detamore and K. A. Athanasiou, Tensile properties of the porcine temporomandibular joint disc. J. Biomech. Eng. 2003; 125: 558–565.
- 36E. Tanaka, M. Tanaka, Y. Hattori, J. Aoyama, M. Watanabe, A. Sasaki, M. Sugiyama, and K. Tanne, Biomechanical behaviour of bovine temporomandibular articular discs with age. Arch. Oral Biol. 2001; 46: 997–1003.
- 37T. Shengyi, X. Yinghua, C. Mongshi, and L. Yongnian, Biomechanical properties and collagen fiber orientation of TMJ discs in dogs: Part 2. Tensile mechanical properties of the discs. J. Craniomandib. Disord. 1991; 5: 107–114.
- 38K. W. Kim, M. E. Wong, J. F. Helfrick, J. B. Thomas, and K. A. Athanasiou, Biomechanical characterization of the superior joint space of the porcine temporomandibular joint. Ann. Biomed. Eng. 2003; 31: 924–930.
- 39J. Chen, U. Akyuz, L. Xu, and R. M. Pidaparti, Stress analysis of the human temporomandibular joint. Med. Eng. Phys. 1998; 20: 565–572.
- 40J. Chen and L. Xu, A finite element analysis of the human temporomandibular joint. J. Biomech. Eng. 1994; 116: 401–407.
- 41E. Tanaka, D. P. Rodrigo, Y. Miyawaki, K. Lee, K. Yamaguchi, and K. Tanne, Stress distribution in the temporomandibular joint affected by anterior disc displacement: a three-dimensional analytic approach with the finite-element method. J. Oral Rehabil. 2000; 27: 754–759.
- 42M. Beek, J. H. Koolstra, L. J. van Ruijven, and T. M. van Eijden, Three-dimensional finite element analysis of the human temporomandibular joint disc. J. Biomech. 2000; 33: 307–316.
- 43U. Posselt, The temporomandibular joint syndrome and occlusion. J. Prosthet. Dent. 1971; 25: 432–438.
- 44A. J. Spencer, The estimation of need for dental care. J. Public Health Dent. 1980; 40: 311–327.
- 45G. E. Carlsson, Epidemiology and treatment need for temporomandibular disorders. J. Orofac. Pain. 1999; 13: 232–237.
- 46W. K. Solberg, M. W. Woo, and J. B. Houston, Prevalence of mandibular dysfunction in young adults. J. Am. Dent. Assoc. 1979; 98: 25–34.
- 47W. K. Solberg, Epidemiology, incidence and prevalence of temporomandibular disorders: a review. In: D. Laskin, W. Greenfield, E. Gale, J. Rugh, D. Neft, C. Alling, and W. A. Dyer eds., Diagnosis and Management of Temporomandibular Disorders Chicago, IL: American Dental Association, 1983.
- 48T. T. Dao and L. LeResche, Gender differences in pain. J. Orofac. Pain 2000; 14: 169–184,185–195.
- 49C. H. Wilkes, Internal derangements of the temporomandibular joint. Pathological variations. Arch. Otolaryngol. Head Neck Surg 1989; 115: 469–477.
- 50T. B. Aufdemorte, J. E. Van Sickels, M. F. Dolwick, P. J. Sheridan, G. R. Holt, S. B. Aragon, and G. A. Gates, Estrogen receptors in the temporomandibular joint of the baboon (Papio cynocephalus): an autoradiographic study. Oral Surg. Oral Med. Oral Pathol. 1986; 61: 307–314.
- 51A. O. Abubaker, W. Arslan, and G. C. Sotereanos, Estrogen and progesterone receptors in the temporomandibular joint disc of symptomatic and asymptomatic patients. J. Oral Maxillofac. Surg. 1991; 49: 111–112.
- 52S. B. Milam, T. B. Aufdemorte, P. J. Sheridan, R. G. Triplett, J. E. Van Sickels, and G. R. Holt, Sexual dimorphism in the distribution of estrogen receptors in the temporomandibular joint complex of the baboon. Oral Surg. Oral Med. Oral Pathol. 1987; 64: 527–532.
- 53C. S. Greene and J. J. Marbach, Epidemiologic studies of mandibular dysfunction: a critical review. J. Prosthet. Dent. 1982; 48: 184–190.
- 54M. Helkimo, Studies on function and dysfunction of the masticatory system. I. An epidemiological investigation of symptoms of dysfunction in Lapps in the north of Finland. Proc. Finn. Dent. Soc. 1974; 70: 37–49.
- 55J. R. Fricton and E. L. Schiffman, Reliability of a craniomandibular index. J. Dent. Res 1986; 65: 1359–1364.
- 56D. Morrow, R. H. Tallents, R. W. Katzberg, W. C. Murphy, and T. C. Hart, Relationship of other joint problems and anterior disc position in symptomatic TMD patients and in asymptomatic volunteers. J. Orofac. Pain. 1996; 10: 15–20.
- 57M. F. Dolwick, Diagnosis and etiology. In: C. A. Helms, R. W. Katzberg, and M. F. Dolwick eds., Internal Derangements of the Temporomandibular Joint San Francisco, CA: Radiology Research and Education Foundation, 1983.
- 58B. Stegenga, L. G. de Bont, G. Boering, and J. D. van Willigen, Tissue responses to degenerative changes in the temporomandibular joint: a review. J. Oral Maxillofac. Surg. 1991; 49: 1079–1088.
- 59L. S. Kamelchuk and P. W. Major, Degenerative disease of the temporomandibular joint. J. Orofac. Pain. 1995; 9: 168–180.
- 60C. L. Haskin, S. B. Milam, and I. L. Cameron, Pathogenesis of degenerative joint disease in the human temporomandibular joint. Crit. Rev. Oral Biol. Med. 1995; 6: 248–277.
- 61P. A. Guerne, A. Sublet, and M. Lotz, Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J. Cell. Physiol. 1994; 158: 476–484.
- 62M. B. Goldring, E. Sohbat, J. M. Elwell, and J. Y. Chang, Etodolac preserves cartilage-specific phenotype in human chondrocytes: effects on type II collagen synthesis and associated mRNA levels. Eur. J. Rheumatol. Inflamm. 1990; 10: 10–21.
- 63M. B. Goldring, J. Birkhead, L. J. Sandell, T. Kimura, and S. M. Krane, Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J. Clin. Invest. 1988; 82: 2026–2037.
- 64T. F. Cruz, R. A. Kandel, and I. R. Brown, Interleukin 1 induces the expression of a heat-shock gene in chondrocytes. Biochem. J. 1991; 277(Pt 2): 327–330.
- 65E. W. Raines, S. K. Dower, and R. Ross, Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 1989; 243: 393–396.
- 66P. D. Bonin and J. P. Singh, Modulation of interleukin-1 receptor expression and interleukin-1 response in fibroblasts by platelet-derived growth factor. J. Biol. Chem. 1988; 263: 11052–11055.
- 67J. Sato, N. Segami, T. Suzuki, K. Kaneyama, Y. Yoshitake, and K. Nishikawa, The expression of vascular endothelial growth factor in synovial tissues in patients with internal derangement of the temporomandibular joint. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2002; 93: 251–256.
- 68A. Gyorfi, A. Fazekas, and L. Rosivall, Neurogenic inflammation and the oral mucosa. J. Clin. Periodontol 1992; 19: 731–736.
- 69P. G. Green, A. I. Basbaum, and J. D. Levine, Sensory neuropeptide interactions in the production of plasma extravasation in the rat. Neuroscience 1992; 50: 745–749.
- 70C. Pincelli, F. Fantini, and A. Giannetti, Neuropeptides and skin inflammation. Dermatology 1993; 187: 153–158.
- 71H. Chandra and M. C. Symons, Sulphur radicals formed by cutting alpha-keratin. Nature 1987; 328: 833–834.
- 72Z. Weitz, S. A. Moak, and R. A. Greenwald, Degradation of hyaluronic acid by neutrophil derived oxygen radicals is stimulus dependent. J. Rheumatol. 1988; 15: 1250–1253.
- 73H. Saari, T. Sorsa, and Y. T. Konttinen, Reactive oxygen species and hyaluronate in serum and synovial fluid in arthritis. Int. J. Tissue React. 1990; 12: 81–89.
- 74H. Saari, Oxygen derived free radicals and synovial fluid hyaluronate. Ann. Rheum. Dis. 1991; 50: 389–392.
- 75T. Annandale, Displacement of the inter-articular cartilage of the lower jaw, and its treatment by operation. Lancet1887 1: 411.
- 76T. Kondoh, Y. Hamada, K. Kamei, and K. Seto, Simple disc reshaping surgery for internal derangement of the temporomandibular joint: 5-year follow-up results. J. Oral Maxillofac. Surg. 2003; 61: 41–48.
- 77M. F. Dolwick and D. W. Nitzan, TMJ disk surgery: 8-year follow-up evaluation. Fortschr. Kiefer. Gesichtschir 1990; 35: 162–163.
- 78W. L. McCarty and W. B. Farrar, Surgery for internal derangements of the temporomandibular joint. J. Prosthet. Dent. 1979; 42: 191–196.
- 79C. Kiehn, Meniscectomy for internal derangement of temporomandibular joint. Am. J. Surg. 1952; 83: 364.
- 80L. N. Estabrooks, C. E. Fairbanks, R. J. Collett, and L. Miller, A retrospective evaluation of 301 TMJ Proplast-Teflon implants. Oral Surg. Oral Med. Oral Pathol. 1990; 70: 381–386.
- 81J. Fricton, O. Look, E. Schiffman, and J. Swift, Long-term study of temporomandibular joint surgery with alloplastic implants campared with nonimplant surgery and nonsurgical rehabilitation for painful temporomandibular joint disc displacement. J. Oral Maxillofac. Surg. 2002; 60: 1400–1411.
- 82R. B. Ross, Costochondral grafts replacing the mandibular condyle. Cleft Palate Craniofac. J. 1999; 36: 334–339.