Stainless Steels for Implants
Lyle D. Zardiackas,
Lyle D. Zardiackas
University of Mississippi Medical Center, Department of Biomedical Materials Science, Jackson, Mississippi
Search for more papers by this authorLyle D. Zardiackas,
Lyle D. Zardiackas
University of Mississippi Medical Center, Department of Biomedical Materials Science, Jackson, Mississippi
Search for more papers by this authorAbstract
Stainless steel has been and continues to be among the most widely used metals for implant applications. Along with Co-Cr alloys, CP titanium and titanium alloys, and expanding use of Ni-Ti alloy (Nitinol), implant-quality austenitic steels find a variety of uses for implants. These alloys are used for orthopedic, dental, and cardiovascular applications.
Bibliography
- 1J. G. Parr and A. Hanson, An introduction to stainless steel. In: R. A. Lula, ed. Stainless Steel. Metals Park, OH: American Society for Metals, 1986.
- 2ASTM, Standard Specification for Wrought 18 Chromium-14 Nickel-2.5 Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673). ASTM Standards Vol. 13.01. West Conshohocken, PA: ASTM, 2004.
- 3ASTM, Standard Specification for Wrought 18 Chromium-14 Nickel-2.5 Molybdenum Stainless Steel Sheet and Strip for Surgical Implants (UNS S31673). ASTM Standards Vol. 13.01. West Conshohocken, PA: ASTM, 2004.
- 4ASTM, Standard Specification for Wrought Nitrogen Strengthened 22 Chromium - 13 Nickel - 5 Manganese - 2.5 Molybdenum Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S20910). ASTM Standards Vol. 13.01. West Conshohocken, PA: ASTM, 2004.
- 5ASTM, Standard Specification for Wrought, Nitrogen Strengthened 23Manganese-21Chromium-1Molybdenum Low-Nickel Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S29108). ASTM Standards Vol. 13.01. West Conshohocken, PA: ASTM, 2004.
- 6ASTM, Standard Specification for 18 Chromium-12.5 Nickel-2.5 Molybdenum Stainless Steel for Cast and Solution-Annealed Surgical Implant Applications. ASTM Standards Vol. 13.01. West Conshohocken, PA: ASTM, 2004.
- 7ASTM, Standard Specification for Stainless Steel Forgings for Surgical Implants. Annual Book of ASTM Standards Vol. 13.01. West Conshohocken, PA: ASTM, 2004.
- 8O. E. M. Pohler, Failures of metallic orthopedic implants. In: Gordon, W. Powell, and Salah E. Mahmoud, eds., ASM Handbook, 9th ed., vol. 11, Failure Analysis and Prevention. Metals Park, OH: ASM International, 1986.
- 9L. D. Zardiackas and L. D. Dillon, Failure analysis of metallic orthopedic devices. In: D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E. R. Schwartz, eds., Encyclopedic Handbook of Biomaterials and Bioengineering, Part B: Applications, vol. 1. New York: Marcel Dekker, 1995.
- 10W. J. Bratina, S. B. Young, M. J. Morgan, R. M. Pilliar, S. Yue, and A. C. Wallace, Fatigue deformation and fractographic analysis of surgical implants and implant materials. Proceedings of the International Conference and Exhibits on Failure Analysis, July 8–11, 1991, Montreal, Quebec, Canada.
- 11S. D. Washko and G. Aggen, Wrought stainless steels. In: J. R. Davis, et al., eds., Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1. Materials Park, OH: ASM International, 1990.
10.1016/0014-5793(90)80077-V Google Scholar
- 12M. Windler, R. Steger, and G. L. Winters, Quality aspects of high-nitrogen stainless steel for surgical implants. In: G. L. Winters and M. J. Nutt, eds., Stainless Steels for Medical and Surgical Applications. West Conshohocken, PA: ASTM, 2003.
- 13L. D. Zardiackas, M. Roach, S. Williamson, and J-A. Bogan, Comparison of corrosion fatigue of BioDur 108 to 316L S.S. and 22Cr-13Ni-5Mn S.S. In: G. L. Winters and M. J. Nutt, eds., Stainless Steels for Medical and Surgical Applications. West Conshohocken, PA: ASTM, 2003.
- 14M. Nakajima, Y. Akatsuda, and K. Tokaji, Fatigue-crack initiation and growth of stainless-steels in 3-percent-NAcl solution. 9th International Conference in Fracture (ICF9), April 1–5 1997, Sydney, Australia.
- 15M. Roach, R. S. Williamson, and L. D. Zardiackas, Comparison of the Corrosion Fatigue Characteristics of 23Mn-21Cr-1Mo Low Nickel, 22Cr-13Ni-5Mn, and 18Cr-14Ni-2.5Mo Stainless Steels. ASTM Symposium of Fatigue and Fracture of Medical Metallic Materials and Devices. November 8–11 2005, Dallas, Texas.
- 16L. D. Zardiackas, M. Roach, S. Williamson, and J-A. Bogan, Comparison of notch sensitivity and stress corrosion cracking of a low-nickel stainless steel to 316LS and 22Cr-13Ni-5Mn stainless steels. In: G. L. Winters and M. J. Nutt, eds., Stainless Steels for Medical and Surgical Applications. West Conshohocken, PA: ASTM, 2003.
- 17L. D. Zardiackas, M. Roach, S. Williamson, and J-A. Bogan, Comparison of notch sensitivity and stress corrosion cracking of a low-nickel stainless steel to 316L and 22Cr-13Ni-5Mn stainless steels. In: G. L Winters and M. J. Nutt, eds., Stainless Steels for Medical and Surgical Applications. West Conshohocken, PA: ASTM, 2003.
- 18J. P. Sheehan, C. R. Morin, and K. F. Packer, Study of stress corrosion cracking susceptibility of type 316L stainless steel in vitro. In: A. C. Fraker and C. D. Griffin, eds., Corrosion and Degradation of Implant Materials. Philadelphia, PA: ASTM, 1985.
- 19A. J. Sedricks, Stress corrosion cracking. Corrosion of Stainless Steels. Princeton, NJ: The Electrochemical Society.
- 20J. E. Truman, The influence of chloride content, pH and temperature of test solution on the occurrence of stress corrosion cracking with austenitic stainless steel. Corrosion Science, vol. 17. London: Pergamon Press, 1977.
- 21K. J. Bundy, M. Marek, and R. F. Hochan, In vivo and in vitro studies of the stress-corrosion cracking behavior of surgical implant alloys. J. Biomed. Mater. Res. 1983;17.
- 22W. R. Warke, Stress-corrosion cracking. Failure Analysis and Prevention. Materials Park, OH: ASM International, 2002.
- 23E. J. Czyryca and D. Taylor, Fatigue crack initiation. Metals Handbook, 9th ed., vol. 8. Metals Park, OH: ASM International, 1985.
- 24T. S. Gross and S. Lampman, Micromechanisms of monotonic and cyclic crack frowth. ASM Handbook, vol. 19, Fatigue and Fracture. Materials Park, OH: ASM International 1996.
- 25O. E. M. Pohler, Failures of metallic orthopedic implants. Metals Handbook, 9th ed., vol. 11, Failure Analysis and Prevention. Metals Park, OH: ASM International, 1986.
- 26L. D. Zardiackas and L. D. Dillon, Failure analysis of metallic orthopedic devices. In: D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E. R. Shwartz, eds., Encyclopedic Handbook of Biomaterials and Bioengineering, Part B: Applications, vol. 1. New York: Marcel Dekker, 1995.
- 27ASTM, Stainless Steel for Medical and Surgical Applications. In: G. L. Winters and M. J. Nutt, eds., West Conshohocken, PA: ASTM, 2003.
- 28M. Cramers and U. Lucht, Metal sensitivity in patients treated for tibial fractures with plates of stainless steel. Acta Orthop. Scand. 1977.
- 29R. Kubba, J. S. Taylor, and K. E. Marks, Cutaneous complications of orthopedic implants. Arch. Dermatol. 1981;117.
- 30K. A. Thomas, S. D. Cook, A. F. Harding, and R. J. Haddad, Jr., Tissue reaction to implant corrosion in 38 internal fixation devices. Implant Corrosion 1988; 11(3).
- 31G. Rostoker et al., Dermatitis due to orthopaedic implants. J. Bone Joint Surg. 1987; 69-A(9).
- 32K. Merritt, L. Wenz, and S. A. Brown, Cell association of fretting corrosion products generated in a cell culture. J. Orthopaed. Res. 1991.