Mechanical Testing
Ronald Mark Gillies
WorleyParsons Advanced Analysis Group, Sydney, Australia
Search for more papers by this authorRonald Mark Gillies
WorleyParsons Advanced Analysis Group, Sydney, Australia
Search for more papers by this authorAbstract
Mechanical testing is the investigation of the relationship between the structure and properties of a material. It is an avenue to evaluate the design of a structure-property correlation, where the design must conform to an agreed standard. In biomedical engineering, these mechanical tests are usually the investigation of biocompatible devices and biological tissues. The mechanical tests or simulations may involve joint or organ kinematics and load deformation characteristics of soft tissues. The biomechanics involved in the motion of the joints are complex and require an ability to simulate the contraction and antagonistic relaxation of the involved muscle groups. The majority of mechanical testing specifications are normally defined by standards organizations or published guidelines.
Bibliography
- 1W. D. Callister, Materials Science and Engineering: An Introduction. Toronto, Canada: John Wiley & Sons, 1991.
- 2S. Kalpakjian, Manufacturing Processes for Engineering Materials. Sydney, Australia: Addison-Wesley, 1991.
- 3L. C. Mejia, Mechanical Testing Systems For Biomaterials/Biomechanics Research. Eden Prairie, MN: MTS Systems Corporation, 1994, pp. 1–16.
- 4J. M. Gere and S. P. Timoshenko, Mechanics of Materials. London: Chapman & Hall, 1991.
10.1007/978-1-4899-3124-5 Google Scholar
- 5A. Kanamori, S. L. Woo, C. B. Ma, J. Zeminski, T. W. Rudy, G. Li, and G. A. Livesay, The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthroscopy 2000; 6(16): 633–639.
- 6A. Kanamori, M. Sakane, J. Zeminski, T. W. Rudy, and S. L. Woo, In-situ force in the medial and lateral structures of intact and ACL-deficient knees. J. Orthop. Sci. 2000; 6(5): 567–571.
10.1007/s007760070007 Google Scholar
- 7A. M. Ahmed and C. McLean, In vitro measurement of the restraining role of the anterior cruciate ligament during walking and stair ascent. J. Biomech. Eng. 2002; 6(124): 768–779.
- 8R. C. Dorf, Modern Control Systems. Boston, MA: Addison-Wesley, 1992.
- 9T. M. Keaveny, T. P. Pinilla, R. P. Crawford, D. L. Kopperdahl, and A. Lou, Systematic and random errors in compression testing of trabecular bone. J. Orthop. Res. 1997; 1(15): 101–110.
- 10T. M. Keaveny, R. E. Borchers, L. J. Gibson, and W. C. Hayes, Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. J. Biomech. 1993; 4–5(26): 599–607.
10.1016/0021-9290(93)90021-6 Google Scholar
- 11 ASTM-International, Medical Devices; Emergency Medical Devices, ASTM Standards. W. Coshohocken, PA: ASTM, 2002.
- 12B. S. Miller, W. P. Harper, R. M. Gillies, D. H. Sonnabend, and W. R. Walsh, Biomechanical analysis of five fixation techniques used in glenohumeral arthrodesis. ANZ J. Surg. 2003; 12(73): 1015–1017.
- 13M. Schramm, S. Krummbein, H. Kraus, R. P. Pitto, and R. Schmidt, Anterior vertebral body screw pullout testing with the hollow modular anchorage system—a comparative in vitro study. Biomed. Tech. (Berl) 2003; 12(48): 356–361.
- 14P. Clavert, F. Bonnomet, J. F. Kempf, P. Boutemy, M. Braun, and J. L. Kahn, Contribution to the study of the pathogenesis of type II superior labrum anterior-posterior lesions: a cadaveric model of a fall on the outstretched hand. J. Shoulder Elbow Surg. 2004; 1(13): 45–50.
- 15E. N. Kubiak, M. Bong, S. S. Park, F. Kummer, K. Egol, and K. J. Koval, Intramedullary fixation of unstable intertrochanteric hip fractures: one or two lag screws. J. Orthop. Trauma 2004; 1(18): 12–17.
- 16J. Harris and L. Fallat, Effects of isolated Weber B fibular fractures on the tibiotalar contact area. J. Foot Ankle Surg. 2004; 1(43): 3–9.
10.1053/j.jfas.2003.11.008 Google Scholar
- 17J. Hobbiesiefken, M. E. Ehlers, P. Behrens, and L. Wunsch, Urothelial mesh—a new technique of cell culture on biomaterials. Eur. J. Pediatr. Surg. 2003; 6(13): 361–366.
- 18C. G. Kissel, S. C. Friedersdorf, D. S. Foltz, and T. Snoeyink, Comparison of pullout strength of small-diameter cannulated and solid-core screws. J. Foot Ankle Surg. 2003; 6(42): 334–338.
10.1053/j.jfas.2003.09.007 Google Scholar
- 19L. Cristofolini, A critical analysis of stress shielding evaluation of hip prostheses. Crit. Rev. Biomed. Eng. 1997; 4–5(25):409–483.
- 20L. Cristofolini and M. Viceconti, In vitro stress shielding measurements can be affected by large errors. J. Arthroplasty 1999; 2(14): 215–219.
- 21R. D. Crowninshield, R. A. Brand, R. C. Johnston, and J. C. Milroy, The effect of femoral stem cross-sectional geometry on cement stresses in total hip reconstruction. Clin. Orthop. 1980; 146: 71–77.
- 22R. D. Crowninshield, R. C. Johnston, J. G. Andrews, and R. A. Brand, A biomechanical investigation of the human hip. J. Biomech. 1978; 1–2(11): 75–85.
- 23J. B. Finlay, R. B. Bourne, and J. McLean, A technique for the in vitro measurement of principal strains in the human tibia. J. Biomech. 1982; 10(15): 723–729.
- 24J. B. Finlay, D. G. Chess, W. R. Hardie, C. H. Rorabeck, and R. B. Bourne, An evaluation of three loading configurations for the in vitro testing of femoral strains in total hip arthroplasty. J. Orthop. Res. 1991; 5(9): 749–759.
- 25J. B. Finlay, C. H. Rorabeck, R. B. Bourne, and W. M. Tew, In vitro analysis of proximal femoral strains using PCA femoral implants and a hip-abductor muscle simulator. J. Arthroplasty 1989; 4(4): 335–345.
- 26E. E. Gdoutos, D. D. Raftopoulos, and J. D. Baril, A critical review of the biomechanical stress analysis of the human femur. Biomaterials 1982; 1(3): 2–8.
- 27R. M. Gillies, P. H. Morberg, W. J. Bruce, A. Turnbull, and W. R. Walsh, The influence of design parameters on cortical strain distribution of a cementless titanium femoral stem. Med. Eng. Phys. 2002; 2(24): 109–114.
- 28R. M. Gillies, P. Morberg, T. J. Letters, W. Bruce, M. Neil, N. Pocock, and W. R. Walsh, The effect of five design parameters of a femoral hip component on strain distribution in cortical bone, and the final design influence on bone remodelling. 45th Annual Meeting, Orthopaedic Research Society, 1999: 912.
- 29O. Indong and W. Harris, Proximal strain distribution in the loaded femur. J. Bone Joint Surg. 1978; 1(60-A): 75–85.
- 30A. W. Miles and D. M. Dall, An experimental study of femoral cement stress in total hip replacement—influence of structural stiffness of the femoral stem. Eng. Med. 1985; 3(14): 133–135.
10.1243/EMED_JOUR_1985_014_031_02 Google Scholar
- 31Y. Okumura, S. Imura, H. Oomori, K. Ichihashi, and H. Takedani, Micromotions and strains of cementless femoral prostheses. In: S. Niwa, S. M. Perren, and T. Hattori, eds., Biomechanics in Orthopaedics. Tokyo: Springer-Verlag, 1992.
10.1007/978-4-431-68216-5_12 Google Scholar
- 32T. W. Phillips, S. S. Messieh, and P. D. McDonald, Femoral stem fixation in hip replacement. A biomechanical comparison of cementless and cemented prostheses. J. Bone Joint Surg. [Br] 1990; 3(72): 431–434.
- 33D. A. Brown, S. A. Kautz, and C. A. Dairaghi, Muscle activity patterns altered during pedaling at different body orientations. J. Biomech. 1996; 10(29): 1349–1356.
- 34J. J. Fuller and J. M. Winters, Assessment of 3-D joint contact load predictions during postural/stretching exercises in aged females. Ann. Biomed. Eng. 1993; 3(21): 277–288.
- 35H. Schmotzer, G. Tchejeyan, and J. Song, A comparison of various loading configurations of the proximal femur for the evaluation of reconstructive surgical procedures. Proc. Inst. Mech. Eng. [H] 1992; 1(206): 29–36.
10.1243/PIME_PROC_1992_206_258_02 Google Scholar
- 36M. Voigt, E. B. Simonsen, P. Dyhre-Poulsen, and K. Klausen, Mechanical and muscular factors influencing the performance in maximal vertical jumping after different prestretch loads. J. Biomech. 1995; 3(28): 293–307.
- 37P. Wretenberg, Y. Feng, and U. P. Arborelius, High- and low-bar squatting techniques during weight-training. Med. Sci. Sports Exerc. 1996; 2(28): 218–224.
- 38B. M. Nigg and W. Herzog, Biomechanics of the Musculo-Skeletal System. Chichester, UK: John Wiley & Sons, 1994.
- 39A. Rohlmann, U. Mossner, G. Bergmann, and R. Kolbel, Finite-element-analysis and experimental investigation of stresses in a femur. J. Biomed. Eng. 1982; 3(4): 241–246.
- 40V. T. Inman, Functional aspects of the abductor muscles of the hip. J. Bone Joint Surg. 1947; 29: 607–619.
- 41J. J. Collins, The redundant nature of locomotor optimization laws. J. Biomech. 1995; 3(28): 251–267.
- 42T. W. Lu, S. J. Taylor, J. J. O'Connor, and P. S. Walker, Influence of muscle activity on the forces in the femur: an in vivo study. J. Biomech. 1997; 11–12(30): 1101–1106.
- 43J. R. Davey, D. O. O'Connor, D. W. Burke, and W. H. Harris, Femoral component offset. Its effect on strain in bone-cement. J. Arthroplasty 1993; 1(8): 23–26.
10.1016/S0883-5403(06)80103-8 Google Scholar
- 44M. L. Harris, P. Morberg, W. J. M. Bruce, and W. R. Walsh, An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J. Biomech. 1999; 32: 951–958.