Electromyography (EMG) Modeling
N.A. Dimitrova
Bulgarian Academy of Sciences, Centre of Biomedical Engineering, Sofia, Bulgaria
Search for more papers by this authorG.V. Dimitrov
Bulgarian Academy of Sciences, Centre of Biomedical Engineering, Sofia, Bulgaria
Search for more papers by this authorN.A. Dimitrova
Bulgarian Academy of Sciences, Centre of Biomedical Engineering, Sofia, Bulgaria
Search for more papers by this authorG.V. Dimitrov
Bulgarian Academy of Sciences, Centre of Biomedical Engineering, Sofia, Bulgaria
Search for more papers by this authorAbstract
Modeling is a measure of our understanding of processes and a tool for checking hypotheses and making prognoses. Any attempt to understand and explain electromyographic (EMG) signals, their characteristics, and changes is related to modeling. The authors’ aim is to present the main ideas of EMG modeling in terms understandable to people without special mathematical education. The main physical regularities that rule the formation of electrical potentials in a volume conductor (extracellular medium) are pictorially demonstrated and can be realized ignoring equations. Potentials produced by individual muscle fibers are the basis of EMG signals, which is why a more detailed picture of the physical basis for modeling single-fiber potentials (SFPs) generated in a homogeneous volume conductor of infinite extent is presented. It is demonstrated why the shape of SFP changes with distance from the active fibers, why amplitude of EMG signal can be an unreliable characteristic, and why detection of EMG by needle and surface electrodes has different sensitivity to prolonged phase of repolarization or to after-depolarization in intracellular action potential (IAP) and to IAP propagation velocity along the fiber. Description of some equations resulting in fast calculation of the motor unit potentials and interference EMG are presented. The latest papers on mathematical modeling that take into account inhomogeneous and restricted muscle tissue are discussed.
Bibliography
- 1C. S. Sherrington, Ferrier lecture: some functional problems attaching to convergence. Proc. R. Soc. (Lond.) 1929; 105: 332–362.
- 2J. Ekstedt, Human single muscle fiber potentials. Acta Physiol. Scand. 1964; 61(Suppl 226): 1–96.
- 3E. Stålberg and J. V. Trontelj, Single Fiber Electromygraphy, Surrer, UK: Mirvalle Press, 1979: 1–244.
- 4J. V. Basmajian and C. J. DeLuca Muscles Alive: Their Functions Revealed by Electromyography. 5th ed. Baltimore, MD: William and Wilkins, 1985.
- 5G. V. Dimitrov, C. Disselhorst-Klug, N. A. Dimitrova, E. Schulte, and G. Rau, Simulation analysis of the ability of different types of multi-electrodes to increase selectivity of detection and to reduce cross-talk. J. Electromyogr. Kinesiol. 2003; 13: 125–138.
- 6N. A. Dimitrova, G. V. Dimitrov, and O. A. Nikitin, Neither high-pass filtering nor mathematical differentiation of the EMG signals can considerably reduce cross-talk. J. Electromyogr. Kinesiol. 2002; 12: 235–246.
- 7H. Helmholtz, Uber einege Gesetze der Vertheilung elektrischer Ströme in Körpelischen Leitern mit Anwendung auf die thierischelektrischen Versuche. Ann. Phys. Chem.1853 29: 222–227.
- 8F. N. Wilson, A. G. MacLeod, and P. S. Barker, The distribution of the action currents produced by heart muscle and other excitable tissues immersed in extensive conducting media. J. Gen. Physiol. 1933; 16: 423–456.
- 9R. Plonsey, The active fiber in a volume conductor. IEEE Trans. Biomed. Eng. 1974; 21: 371–381.
- 10N. Dimitrova, Influence of the length of the depolarized zone on the extracellular potential field of a single unmyelinated nerve fibre. Electromyogr. Clin. Neurophysiol. 1973; 13: 547–558.
- 11G. V. Dimitrov and N. A. Dimitrova, Modeling of the extracellular potentials generated by curved fibres in a volume conductor. Electromyogr. Clin. Neurophysiol. 1980; 20: 27–40.
- 12D. C. Boyd, P. D. Lawrence, and P. J. A. Bratty, On modeling the single motor unit action potential. IEEE Trans. Biomed. Eng. 1978; 25: 236–243.
- 13F. Buchthal and P. Pinelli, Analysis of muscle action potentials as a diagnostic aid in neuromuscular disorders. Acta Med. Scand. 1952; 142(Suppl 266): 315–327.
- 14E. Stålberg, Propagation velocity in human muscle fibers in situ. Acta Physiol. Scand. 1966; 70(Suppl 287): 1–112.
- 15E. Stålberg, S. D. Nandedkar, D. B. Sanders, and B. Kalck, Quantitative motor unit potential analysis. J. Clin. Neurophysiol. 1996; 13: 401–422.
- 16G. V. Dimitrov and N. A. Dimitrova, Extracellular potential field of a single striated muscle fibre immersed in anisotropic volume conductor. Electromyogr. Clin. Neurophysiol. 1974; 14: 423–436.
- 17N. A. Dimitrova, Model of the extracellular potential field of a single striated muscle fibre. Electromyogr. Clin. Neurophysiol. 1974; 14: 53–66.
- 18N. A. Dimitrova and G. V. Dimitrov, Amplitude-related characteristics of motor unit and M-wave potentials during fatigue. A simulation study using literature data on intracellular potential changes found in vitro. J. Electromyogr. Kinesiol. 2002; 12: 339–349.
- 19N. A. Dimitrova and G. V. Dimitrov, Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies. J. Electromyogr. Kinesiol. 2003; 13: 13–36.
- 20G. V. Dimitrov and N. A. Dimitrova, Influence of the after-potentials on the shape and magnitude of the extracellular potentials generated under activation of excitable fibres. Electromyogr. Cliniol. Neurophysiol. 1979; 19: 249–267.
- 21G. V. Dimitrov and N. A. Dimitrova, Extracellular potentials produced by a transition between inactive and active regions of an excitable fibre. Electromyogr. Clin. Neurophysiol. 1989; 29: 265–271.
- 22C. H. Håkansson, Action potentials recorded intra- and extracellularly from the isolated frog muscle fibre in Ringer's solution and air. Acta Physiol. Scand. 1957; 39: 291–312.
- 23G. V. Dimitrov, Changes in the extracellular potentials produced by unmyelinated nerve fibre resulting from alterations in the propagation velocity or the duration of the action potential. Electromyogr. Clin. Neurophysiol. 1987; 27: 243–249.
- 24Z. C. Lateva and K. C. McGill, Estimating motor-unit architectural properties by analyzing motor-unit action potential morphology. Clin. Neurophysiol. 2001; 112: 127–135.
- 25K. C. McGill, Z. C. Lateva, and S. Xiao, A model of the muscle action potential for describing the leading edge, terminal wave, and slow afterwave. IEEE Trans. Biomed. Eng. 2001; 48: 1357–1365.
- 26T. I. Arabadzhiev, G. V. Dimitrov, and N. A. Dimitrova, Simulation analysis of the ability to estimate motor unit propagation velocity non-invasively by different two-channel methods and types of multi-electrodes. J. Electromyogr. Kinesiol. 2003; 13: 403–415.
- 27D. Farina, C. Cescon, and R. Merletti, Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol. Cybern. 2002; 86: 445–456.
- 28J-Y. Hogrel, J. Duchêne, and J-F. Marini, Variability of some SEMG parameter estimates with electrode location. J. Electromyogr. Kinesiol. 1998; 8: 305–315.
- 29N. A. Dimitrova, G. V. Dimitrov, and Z. C. Lateva, Influence of the fiber length on the power spectrum of single muscle fiber extracellular potentials. Electromyogr. Clin. Neurophysiol. 1991; 31: 387–398.
- 30D. Farina, R. Merletti, B. Indini, M. Nazzaro, and M. Pozzo, Surface EMG crosstalk between knee extensor muscles: experimental and model results. Muscle Nerve. 2002; 26: 681–695.
- 31N. A. Dimitrova, C. Disselhorst-Klug, G. V. Dimitrov, and G. Rau, Area to amplitude ratio of the terminal phase of the belly-tendon detected motor unit potentials could be used to recognize reinnervated motor units. Electromyogr. Clin. Neurophysiol. 2002; 42: 267–273.
- 32G. V. Dimitrov and N. A. Dimitrova, Extracellular potential field of an excitable fibre immersed in anisotropic volume conductor. Electromyogr. Clin. Neurophysiol. 1974; 14: 437–540.
- 33O. B. Wilson, J. W. Clark, N. Ganapathy, and T. L. Harman, Potential field from an active nerve in an inhomogeneous, anisotropic volume conductor - the forward problem. IEEE Trans. Biomed. Eng. 1985; 32: 1032–1041.
- 34B. A. Albers, W. L. C. Rutten, W. Wallinga-de Jonge, and H. B. K. Boom, A model study on the influence of structure and membrane capacitance on volume conductor in skeletal muscle tissue. IEEE Trans. Biomed. Eng. 1986; 33: 681–689.
- 35B. A. Albers, J. H. M. Put, W. Wallinga-de Jonge, and P. Wirtz, Quantitative analysis of single muscle fiber action potentials at known distances. Electroenceph. Clin. Neurophysiol. 1989; 73: 245–253.
- 36S. Andreassen and A. Rosenfalck, Relationship of intracellular and extracellular action potentials of skeletal muscle fibers. CRC Crit. Rev. Bioeng. 1981; 7: 267–306.
- 37S. D. Nandedkar and E. V. Stålberg, Simulation of single muscle fibre action potentials. Med. Biol. Eng. Comput. 1983; 21: 158–165.
- 38R. Plonsey, Bioelectrical Phenomena, New York: Mc-Graw-Hill, 1969.
- 39D. F. Stegeman, R. Merletti, and H. J. Hermens, EMG modeling and simulation. In: R. Merletti and P. A. Parker, eds., Electromyography: Physiology, Engineering, and Noninvasive Applications. New York: IEEE Press and John Wiley & Sons, 2004.
- 40B. K. van Veen, E. Mast, R. Busschers, A. J, Verloop, W. Wallinga, W. L. C. Rutten, P. O. Gerrits, and H. B. K. Boom, Single fiber action potentials in skeletal muscle related to recording distances. J. Electromyogr. Kinesiol. 1994; 4: 37–46.
- 41G. V. Dimitrov and N. A. Dimitrova, Precise and fast calculation of the motor unit potentials detected by a point and rectangular plate electrode. Med. Eng. Phys. 1998; 20: 374–381.
- 42N. A. Dimitrova, A. G. Dimitrov, and G. V. Dimitrov, Calculation of extracellular potentials produced by inclined muscle fibres at a rectangular plate electrode. Med. Eng. Phys. 1999; 21: 582–587.
- 43N. A. Dimitrova, G. V. Dimitrov, and A. G. Dimitrov, Calculation of spatially filtered signals produced by a motor unit comprising motor unit with a non-uniform propagation. Med. Biol. Eng. Compt. 2001; 39: 202–207.
- 44N. Dimitrova, Mathematical modelling of intra- and extracellular potentials generated by active structures: effects of a step change in structure diameter. Gen. Physiol. Biophys. 1987; 6: 19–34.
- 45S. S. Goldstein and W. Rall, Changes of action potential shape and velocity for changing core-conductor geometry. Biophys. J. 1974; 14: 731–757.
- 46N. A. Dimitrova, G. V. Dimitrov, and O. A. Nikitin, Longitudinal variations of characteristic frequencies of skeletal muscle fibre potentials detected by a bipolar electrode or multi-electrode. J. Med. Eng. Techn. 2001; 25: 34–40.
- 47L. Lindström, On the frequency spectrum of EMG signals. Techn. Rep. 7:70, Res. Lab. Med. Electr. Chalmers Univ. Technol. Göteborg, Sweden., 1973: 1–39.
- 48L. H. Lindström, A model describing the power spectrum of myoelectric signals. Part I: single fiber signal. Techn Rep. 5:75, Depatr. Appl. Electronics Chalmers Univ. Technol. Göteborg and Depatr. Clin. Neurophysiol Sahlgern Hospital Göteborg, Sweden, 1973: 1–30.
- 49C. E. T. Krakau, A note on the Fourier transform of Lorente de Nò's potential function of the external field of a nerve in a volume conductor. Kungl. Fysiol. Sällsk I Lund Förhandl. 1957; 27: 177–183.
- 50G. V. Dimitrov and N. A. Dimitrova, Fundamentals of power spectra of extracellular potentials produced by a skeletal muscle fibre of finite length. Part II: Effect of parameters altering with functional state. Med. Eng. Phys. 1998; 20: 702–707.
- 51G. V. Dimitrov and N. A. Dimitrova, Effect of parameters altering with muscle fibre functional state on power spectra of spatially filtered extracellular potentials. J. Med. Eng. Technol. 2001; 25: 74–78.
- 52G. V. Dimitrov and N. A. Dimitrova, Fundamentals of power spectra of extracellular potentials produced by a skeletal muscle fibre of finite length. Part I: Effect of fibre anatomy. Med. Eng. Phys. 1998; 20: 580–587.
- 53L. Lindström and R. Magnusson, Interpretation of myoelectric power spectra: a model and its application. Proc. IEEE 1977; 65: 653–662.
- 54L. Lindström and I. Petersén, Power spectrum analysis of EMG signals and its application. In: J. E. Desmedt, ed., Computer-aided Electromyogr. Prog. Clin. Neurophysiol. Basel: Karger, 1983; 10: 1–51.
- 55D. A, Winter, A. J. Fuglevand, and S. E. Archer, Crosstalk in surface electromyography: theoretical and practical estimates. J. Electromyogr. Kinesiol. 1994; 4: 15–26.
- 56T. I. Arabadzhiev, G. V. Dimitrov, and N. A. Dimitrova, Intracellular action potential generation and extinction affect strongly the sensitivity of M-wave characteristic frequencies to changes in the peripheral parameters with muscle fatigue. J. Electromyogr. Kinesiol. 2005; 15: 159–169.
- 57L. Lindström, R. Kadefors, and I. Petersén, An electromyographic index for localized muscle fatigue. J. Appl. Physiol. 1977; 43: 750–754.
- 58T. I. Arabadzhiev, G. V. Dimitrov, and N. A. Dimitrova, Simulation analysis of the performance of a novel high sensitive spectral index for quantifying M-wave changes during fatigue. J. Electromyogr. Kinesiol. 2005; 15: 149–158.
- 59N. A. Dimitrova, J-Y. Hogrel, T. I. Arabadzhiev, and G. V. Dimitrov, Estimate of M-wave changes in human biceps brachii during continuous stimulation. J. Electromyogr. Kinesiol. 2005; 15: 341–348.
- 60R. Lorente de Nò, A study of nerve physiology. Studies from the Rockefeller Inst. Med. Res. 1947; 132.
- 61J. Duchêne and J-Y. Hogrel, A model of EMG generation. IEEE Trans. Biomed. Eng. 2000; 47: 192–200.
- 62T. H. J. M. Gootzen, D. F. Stegeman, and A. van Oosterom, Finite limb dimensions and finite muscle length in a model for the generation of electromyographic signals. Electroenceph. Clin. Neurophysiol. 1991; 81: 152–162.
- 63D. Farina and R. Merletti, A novel approach for precise simulation of the EMG signal detected by surface electrodes. IEEE Trans. Biomed. Eng. 2001; 48: 637–646.
- 64B. Hammarberg and E. Stålberg, Novel ideas for fast muscle action potential simulations using the line source model. IEEE Trans. Biomed. Eng. 2004; 51: 1888–1897.
- 65A. Heringa, D. F. Stegeman, G. J. H. Hijen, and J. P. C. de Weerd, Solution methods of electrical fields problem in physiology. IEEE Trans. Biomed. Eng. 1982; 29: 34–42.
- 66R. Plonsey, Action potential sources and their volume conductor fields. Proc. IEEE. 1977; 65: 601–611.
- 67K. Roeleveld, J. H. Blok, D. F. Stegeman, and A. van Oosterom, Volume conduction models for surface EMG; confrontation with measurements. J. Electromyogr. Kinesiol. 1997; 7: 221–232.
- 68P. Rosenfalck, Intra- and extracellular fields of active nerve and muscle fibers. A physico-mathematical analysis of different models. Acta Physiol. Scand. 1969; (Suppl. 321):1–168.
- 69D. F. Stegeman, J. P. C. de Weerd, and E. G. J. Eijkman, A volume conductor study of compound action potentials of nerves in situ: the forward problem. Biol. Cybern. 1979; 33: 97–111.
- 70V. M. Bernshtein, Modelling of electric signal of muscle fibers group. Biophysics (in Russian). 1967; 12: 1059–1063.
- 71P. A. M. Griep, K. L. Boon, and D. F. Stegeman, A study of the motor unit action potential by means of computer simulation. Biol. Cybern. 1978; 30: 221–230.
- 72P. A. M. Griep, F. L. H. Gielen, H. B. K. Boom, K. L. Boon, L. L. W. Hoogstraten, C. W. Pool, and W. Walinga-de-Jonge, Calculation and registration of the same motor unit action potential. Electroenceph. Clin. Neurophysiol. 1982; 53: 388–404.
- 73M. M. Lowery and M. J. O’Malley, Analysis and simulation of changes in EMG amplitude during high-level fatiguing contractions. IEEE Trans. Biomed. Eng. 2003; 50: 1052–1062.
- 74M. M. Lowery, N. S. Stoykov, A. Taflove, and T. A. Kuiken, A multiple-layer finite-element model of the surface EMGsignal. IEEE Trans. Biomed. Eng. 2002; 49: 446–454.
- 75M. M. Lowery, C. L. Vaughan, P. J. Nolan, and M. J. O’Malley, Spectral compensation of the electromyographic signal due to decreasing muscle fiber conduction velocity. IEEE Trans. Rehabil. Eng. 2000; 8: 353–361.
- 76B. K. van Veen, N. J. M. Rijkhoff, W. L. C. Rutten, W. Wallinga, and H. B. K. Boom, Potential distribution and single fiber action potentials in a radially bounded muscle model. Med. Biol. Eng. Comput. 1992; 30: 303–310.
- 77B. K. van Veen, H. Wolters, W. Wallinga, W. L. C. Rutten, and H. B. K. Boom, The bioelectrical source in computing single muscle fiber action potentials. Biophys. J. 1993; 64: 1492–1498.
- 78W. Wallinga-de Jonge, F. L. H. Gielen, P. Wirtz, P. de Jong, and J. Broenink, The different intracellular action potentials of fast and slow muscle fibers. Med. Biol. Eng. Comp. 1985; 60: 539–547.
- 79D. Farina, M. Fosci, and R. Merletti, Motor unit recruitment strategies investigated by surface EMG variables. J. Appl. Physiol. 2002; 92: 235–247.
- 80M. M. Lowery, N. S. Stoykov, J. P. A. Dewald, and T. A. Kuiken, Volume conduction in an anatomically based surface EMG model. IEEE Trans. Biomed. Eng. 2004; 51: 2138–2147.
- 81A. Gydikov, N. A. Dimitrova, D. Kosarov, and G. V. Dimitrov, Influence of frequency and duration of firing on the shape of potentials from different types of motor units in human muscles. Exp. Neurol. 1976; 52: 345–355.
- 82R. Merletti, L. Lo Conte, E. Avignone, and P. Guglielminotti, Modelling of surface myoelectric signals. Part I: Model implementation. IEEE Trans. Biomed. Eng. 1999; 40: 810–829.
- 83T. Moritani, M, Muro, and A. Kijima, Electromechanical changes during electrically induced and maximal voluntary contractions: electrophysiologic responses of different muscle fiber types during stimulated contractions. Exp. Neurol. 1985; 88: 471–483.
- 84F. B. Stulen and C. J. DeLuca, The relation between the myoelectric signal and physiological properties of constant force isometric contractions. Electroenceph. Clin. Neurophysiol. 1978; 45: 681–698.
- 85I. Zijdewind, D. Kernell, and C. G. Kukulka, Spatial difference in fatigue-associated electromyographic behaviour of the human first dorsal interosseus muscle. J. Physiol. (Lond.) 1995; 483.2: 499–509.
- 86D. T. Godin, P. A. Parker, and R. N. Scott, Noise characteristics of stainless-steel surface electrodes. Med. Biol. Eng. Comput. 1991; 29: 585–590.
- 87A. Nightingale, Background noise in electromyography. Phys. Med. Biol. 1959; 3: 325–338.
- 88J. Ekstedt and E. Stålberg, How the size of the needle electrode leading-off surface influences the shape of the single muscle fiber action potential in electromyography. Comput. Progr. Biomed. 1973; 3: 204–213.
- 89A. H. Flastersten, Voltage fluctuation of metal-electrolyte interfaces. Med. Biol. Eng. 1966; 4: 583–588.
- 90A. J. Fuglevand, D. A. Winter, A. E. Patla, and D. Stashuk, Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biol. Cybern. 1992; 67: 143–153.
- 91N. A. Dimitrova, G. V. Dimitrov, and V. N. Chihman, Effect of the electrode dimensions on the motor unit potential. Med. Eng. Phys. 1999; 21: 479–485.
- 92A. Hamilton-Wright and D. W. Stashuk, Physiologically based simulation of clinical EMGsignals. IEEE Trans. Biomed. Eng. 2005; 52: 171–183.
- 93D. W. Stashuk, Simulation of electromyographic signals. J. Electromyogr. Kinesiol. 1993; 3: 157–173.
- 94R. E. Burke Motor units: anatomy, physiology and functional organization. In: V. B. Brooks, ed., Handbook of Physiology – The Nervous System II, Part I Bethesda, MD: American Physiological Society, 1981, pp. 345–422.
- 95D. Kernell, Organization and properties of spinal motoneurones and motor units. In: H-J. Freund, U. Büttner, B. Cohen, and J. Noth, eds., Prog. in Brain Res. Elsevier Science Publishers B.V. (Biomedical Division), 1986; 64: 21–30.
- 96A. J. Fuglevand, D. A. Winter, and A. E. Patla, Models of recruitment and rate coding organization in motor-unit pools. J. Neurophysiol. 1993; 70: 2470–2488.
- 97G. Brody, R. N. Scott, and R. Balasubramanian, A model for myoelectric signal generation. Med. Biol. Eng. 1974; 12: 29–41.
- 98Z. S. Pan, Y. Zhang, and P. A. Parker, Motor unit power spectrum and firing rate. Med. Biol. Eng. Comput. 1989; 27: 14–18.
- 99P. A. Parker and R. N. Scott, Statistics of the myoelectric signal from monopolar and bipolar electrodes. Med. Biol. Eng. 1973; 11: 491–496.
- 100R. S. Person and M. S. Libkind, Modelling of interfering bioelectrical activity. Biofizika (in Russian) 1967; 12: 127–134.
- 101R. S. Person and M. S. Libkind, Simulation of electromyograms showing interference patterns. Electroencephalogr. Clin. Neurophysiol. 1970; 28: 625–632.
- 102V. M. Bernshtein, Statistical parameters of the electrical signal of a muscle model. Biofizika (in Russian) 1967; 12: 693–703.
- 103K. Blinowska and M. Piotrkewicz, A study of surface electromyograms by means of digital simulation. II. Spectral analysis of simulated and experimental electromyogram. Electromyogr. Clin. Neurophysiol. 1978; 18: 95–105.
- 104R. E. George, The summation of muscle fiber action potentials. Med. Biol. Eng. 1970; 8: 357–365.
- 105P. Lago and N. B. Jones, Effect of motor unit firing time statistic on EMG power spectra. Med. Biol. Eng. Comput. 1977; 15: 648–655.
- 106M. Piotrkewicz, A study of surface electromyograms by means of digital simulation. I. The principles of a model of surface electromyogram. Electromyogr. Clin. Neurophysiol. 1978; 18: 83–94.
- 107E. A. Clancy and N. Hogan, Single site electromyograph amplitude estimation. IEEE Biomed. Eng. 1994; 41: 159–167.
- 108N. Ostlund, J. Yu, and J. S. Karlsson, Improved maximum frequency estimation with application to instantaneous mean frequency estimation of surface electromyography. IEEE Trans. Biomed. Eng. 2004; 51: 1541–1546.
- 109N. Rababy, R. E. Kearney, and I. W. Hunter, Method for EMG conduction velocity estimation which accounts for input and output noise. Med. Biol. Eng. Comput. 1989; 27: 125–129.
- 110S. D. Nandedkar, D. B. Sanders, and E. V. Stålberg, Simulation and analysis of electromyographic interference pattern in normal muscle. Part I: Turns and amplitude measurements. Muscle Nerve. 1986; 9: 423–430.
- 111S. D. Nandedkar, D. B. Sanders, and E. V. Stålberg, Simulation and analysis of electromyographic interference pattern in normal muscle. Part II: Activity, upper centile amplitude, and number of small segments. Muscle Nerve 1986; 9: 486–491.
- 112D. Kosarov and A. Gydikov, The influence of the volume conduction on the shape of the action potentials recorded by various types of needle electrodes in normal human muscle. Electromyogr. Clin. Neurophysiol. 1975; 15: 319–335.
- 113E. Henneman, Relation between size of neurons and their susceptibility to discharge. Science 1957; 126: 1345–1347.
- 114E. Henneman and C. B. Olson, Relations between structure and function in the design of skeletal muscle. J. Neurophysiol. 1965; 28: 581–598.
- 115E. Henneman, G. Somjen, and D. Carpenter, Functional significance of cell size. J. Neurophysiol. 1965; 28: 560–580.
- 116E. Henneman, G. Somjen, and D. Carpenter, Excitability and inhabitability of motoneurons of different sizes. J. Neurophysiol. 1965; 28: 599–620.
- 117B. M. Van Bolhuis, W. P. Medendorp, and C. C. A. M. Gielen, Motor-unit firing behaviour in human arm flexor muscles during sinusoidal isometric contractions and movements. Brain Res. 1997; 117: 120–130.
- 118P. Christova, A. Kossev, and N. Radicheva, Discharge rate of selected mototr units in human biceps brachii at different muscle lengths. J. Electromyogr. Kinesiol. 1998; 8: 287–294.
- 119A. J. Fuglevand and D. A. Keen, Re-evaluation of muscle wisdom in the human adductor pollicis using physiological rates of stimulation. J. Physiol. (Lond.) 2003; 549.3: 865–875.
- 120A. Gydikov and D. Kosarov, Some features of different motor units in human biceps brachii. Pflügers Arch. 1974; 347: 75–88.
- 121D. Kosarov and A. Gydikov, Dependence of the discharge frequency of motor units in different human muscles upon the level of the isometric muscle tension. Electromyogr. Clin. Neurophysiol. 1976; 16: 293–306.
- 122H. P. Clamann, Statistical analysis of motor unit firing patterns in a human skeletal muscle. Biophys. J. 1969; 9: 1233–1259.
- 123A. A. Gydikov, K. G. Kostov, and P. G. Gatev, Mechanical properties and discharge frequencies of single motor units in human m. biceps brahii. In: M. Kumamoto, ed., Neural and Mechanical Control of Movement. Kyoto: Yamaguchi Shoten, 1984, pp. 19–36.
- 124B. Bigland and O. C. Y. Lippold, Motor unit activity in the voluntary contraction of human muscle. J. Physiol. (Lond.) 1954; 125: 322–335.
- 125K. Kanosue, M. Yoshida, K. Akazawa and K. Fujii, The number of active motor units and their firing rates in voluntary contraction of human brachialis muscle. Jap. J. Physiol. 1979; 29: 427–443.
- 126F. Brachi, M. Decandia, and T. Gualtierotti, Frequency stabilization in the motor centres of spinal cord and caudal brain stem. Am. J. Physiol. 1966; 210: 1170–1177.
- 127H. S. Milner-Brown, R. B. Stein, and R. Yemm, Changes in firing rate of human motor units during linearly changing voluntary contractions. J. Physiol. 1973; 230: 371–390.
- 128H. P. Clamann, Activity of single motor units during isometric tension. Neurology 1970; 20: 254–260.
- 129L. Grimby, J. Hannerz, and B. Hedman, The fatigue and voluntary discharge properties of single motor units in man. J. Physiol. 1981; 316: 545–554.
- 130V. G. Macefield, A. J. Fuglevand, J. N. Howell, and B. Bigland-Ritchie, Discharge behaviour of single motor units during maximal voluntary contractions of a human toe extensor. J. Physiol. (Lond.) 2000; 528.1: 227–234.
- 131C. J. DeLuca and Z. Erim, Common drive of motor units in regulation of muscle force. Trends Neurosci. 1994; 17: 299–305.
- 132C. J. DeLuca, A. M. Roy, and Z. Erim, Synchronization of motor unit firings in several human muscles. J. Neurophysiol. 1993; 70: 2010–2023.
- 133S. F. Farmer, D. M. Halliday, B. A. Conway, J. A. Stephens, and J. R. Rosenberg, A review of recent applications of cross-correlation methodologies to human motor unit recording. J. Neurosci. Meth. 1997; 74: 175–187.
- 134B. Bigland-Ritchie, E. F. Donovan, and C. S. Roussos, Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts. J. Appl. Physiol. 1981; 51: 1300–1305.
- 135P. B. Matthews, Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and synaptic noise. J. Physiol. (Lond.) 1996; 492: 597–628.
- 136J. L. F. Weytjens and D. van Steenberge, Spectral analysis of the surface electromyogram as a tool for studying rate modulation: a comparison between theory, simulation and experiment. Biol. Cybern. 1984; 50: 95–103.
- 137J. L. F. Weytjens and D. van Steenberge, The effects of motor unit synchronization on the power spectrum of the electromyogram. Biol. Cybern. 1984; 51: 71–77.
- 138W. Yao, R. J. Fuglevand, and R. M. Enoka, Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions. J. Neurophysiol. 2000; 83: 441–452.
- 139H. J. Hermens, T. A. M. van Bruggen, C. T. M. Baten, W. L. C. Rutten, and H. B. K. Boom, The median frequency of the surface EMG power spectrum in relation to motor unit firing and action potential properties. J. Electromyogr. Kinesiol. 1992; 2: 15–25.
- 140W. H. J. P. Linssen, D. F. Stegeman, E. M. G. Joosten, M. A. van’t Hof, R. A. Binknorst, and S. L. H. Notermans, Variability and interrelationships of surface EMG parameters during local muscle fatigue. Muscle Nerve 1993; 16: 849–856.
- 141G. Kamen and G. E. Caldwell, Physiology and interpretation of the electromyogram. J. Clin. Neurophysiol. 1996; 13: 366–384.
- 142D. F. Stegeman, J. H. Blok, H. J. Hermens and K. Roeleveld, Surface EMG models: properties and applications. J. Electromyogr. Kinesiol. 2000; 10: 313–326.
- 143J. Schneider, J. Silny, and G. Rau, Influence of tissue inhomogeneities on noninvasive muscle fiber conduction velocity measurements investigated by physical and numerical modeling. IEEE Trans. Biomed. Eng. 1991; 38: 851–860.
- 144G. V. Dimitrov, Extracellular potential field of striated muscle fibre immersed in an anisotropic volume conductor, limited by a dielectric wall. Compt. Rend. Bulg. Acad. Sci. 1974; 27: 1133–1136.
- 145G. V. Dimitrov, C. Disselhorst-Klug, N. A. Dimitrova, A. Trachterna, and G. Rau, The presence of unknown layer of skin and fat is an obstacle to correct estimation of the motor unit size from surface detected potentials. Electromyogr. Clin. Neurophysiol. 2002; 42: 231–241.
- 146R. Merletti and P. A. Parker, Electromyography: Physiology, Engineering, and Noninvasive Applications, New York: IEEE Press and John Wiley & Sons, 2004.
10.1002/0471678384 Google Scholar
- 147F. L. H. Gielen, W. Wallinga-de-Jonge, and K. L. Boon, Electrical conductivity of skeletal muscle tissue: experimental results from different muscles in vivo. Med. Biol. Eng. Comput. 1984; 22: 569–577.
- 148D. Farina and A. Rainoldi, Compensation of the effect of sub-cutaneous tissue layers on surface EMG. A simulation study. Med. Eng. Phys. 1999; 21: 487–496.
- 149J. H. Blok, D. F. Stegeman, and A. van Oosterom, Three-layer volume conductor model and software package for applications in surface electromyography. Ann. Biomed. Eng. 2002; 30: 566–577.
- 150D. Farina, L. Mesin, S. Martina, and R. Merletti, A surface EMG generation model with multilayer cylindrical description of the volume conductor. IEEE Trans. Biomed. Eng. 2004; 51: 415–426.
- 151D. Farina, L. Mesin, and S. Martina, Advances in surface electromyographic signal simulation with analytical and numerical descriptions of the volume conductor. Med. Biol. Eng. Comput. 2004; 42: 467–476.
- 152L. Mesin and D. Farina, Simulation of surface EMGsignals generated by muscle tissues with inhomogeneity due to fiber pinnation. IEEE Trans. Biomed. Eng. 2004; 51: 1521–1529.