Flow Measurement
Arnold A. Fontaine
Pennsylvania State University, Applied Research Laboratory, University Park, Pennsylvania
Search for more papers by this authorSteven Deutsch
Pennsylvania State University, Applied Research Laboratory, University Park, Pennsylvania
Search for more papers by this authorKeefe B. Manning
Pennsylvania State University, Bioengineering Department, University Park, Pennsylvania
Search for more papers by this authorArnold A. Fontaine
Pennsylvania State University, Applied Research Laboratory, University Park, Pennsylvania
Search for more papers by this authorSteven Deutsch
Pennsylvania State University, Applied Research Laboratory, University Park, Pennsylvania
Search for more papers by this authorKeefe B. Manning
Pennsylvania State University, Bioengineering Department, University Park, Pennsylvania
Search for more papers by this authorAbstract
Fluid flow occurs throughout biomedical engineering ranging from air flow in the lungs to diffusion of nutrients through membranes and involves both in vivo and in vitro measurements. Flows involve fluid media in the form of gas, liquid, or multiphase flows of liquids and gas together or in combination with solid matter. They can involve relatively benign flows like that of saline through an intravenous tube to a biochemically active flow of a nonNewtonian fluid such as blood. Many biomedical or bioengineering processes require the quantification of some flow field that may be directly or indirectly related to the process. Such quantification can involve the measurement of volume or mass flow, the static and dynamic pressures, the local velocity of the fluid, the motion (speed and direction) of particles such as cells, the flow-related shear, or the diffusion of a chemical species.
Bibliography
- 1Y. C. Fung, Respiratory gas flow. In: Biomechanics: Motion, Flow, Stress and Growth. New York: Springer-Verlag, 1990, Chapter 7.
10.1007/978-1-4419-6856-2 Google Scholar
- 2F. P. Primiano, Measurements of the respiratory system. In: Webster, ed., Medical Instrumentation: Application and Design. New York: J. Wiley & Sons, 1998, Chapter 9.
- 3C. L. Hampers, E. Schuback, E. G. Lowrie, and J. M. Lazarus, Clinical engineering in hemodialysis and anatomy of an artificial kidney unit. In: Long Term Hemodialysis. New York: Grune and Stratten, 1973.
- 4M. R. Neuman, Therapeutic and prosthetic devices. In: Webster, ed., Medical Instrumentation: Application and Design. New York: J. Wiley & Sons, 1998, Chapter 8.
- 5A. Tedgui and M. J. Lever, Filtration through damaged and undamaged rabbit thoracic aorta. Amer. J. Physiol. 1984; 247: 784.
- 6S. Jin, J. Oshinski, and D. P. Giddens, Effects of wall motion and compliance on flow patterns in the ascending aorta. J. Biomech. Eng. 2003; 125: 347–354.
- 7P. Hochareon, K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch, Wall shear-rate estimation within the 50cc Penn State artificial heart using particle image velocimetry. J. Biomech. Eng. 2004; 126: 430–437.
- 8W. Merzkirch, Flow Visualization. New York: Academic Press, 1974.
- 9H. Rouse and S. Ince, History of hydraulics. Iowa Institute of Hydraulics Research Report, Iowa State University, Ames, Iowa, 1957.
- 10B. Latto, O. El Riedy, and J. Vlachopoulos, Effect of sampling rate on concentration measurements in nonhomogeneous dilute polymer solution flow. J. Rheol. 1981; 25: 583–590.
- 11G. C. Lauchle, M. L. Billet, and S. Deutsch, Hydrodynamic measurements in high speed liquid flow facilities. In: M. Gad-el-Hak, ed., Lecture Notes in Engineering, 46, Experimental Fluid Mechanics. New York: Springer Verlag, 1989.
- 12K. C. White, J. F. Kavanaugh, D. M. Wang, and J. M. Tarbell, Hemodynamics and wall shear rate in the abdominal aorta of dogs. Circ. Res. 1994; 75(4): 637–649.
- 13M. J. W. Povey, Ultrasonic Techniques for Fluids Characterization. San Diego, CA: Academic Press, 1997.
- 14M. P. Siedband, Medical imaging systems. In: Webster, ed., Medical Instrumentation: Application and Design. New York: J. Wiley & Sons, 1998, Chapter 12.
- 15R. J. Adrian, Particle imaging techniques for experimental fluid mechanics. Ann. Rev. Fluid Mech. 1991; 23: 261–304.
- 16J. G. Webster, Measurement of flow and volume of blood. In: Webster, ed., Medical Instrumentation: Application and Design. New York: J. Wiley & Sons, 1998, Chapter 8.
- 17H. H. Lipowski, C. B. McKay, and J. Seki, Transit time distributions of blood flow in the microcirculation. In: Lee and Skalak, eds., Microvascular Mechanics. New York: Springer Verlag, 1989, pp. 13–27.
10.1007/978-1-4612-3674-0_2 Google Scholar
- 18E. J. Shaughnessy, I. M. Katz, and J. P. Schaffer, Introduction to Fluid Mechanics, New York: Oxford University Press, 2005.
- 19J. S. Bendat and A. G. Peirsol, Random Data: Analysis and Measurement Procedures. New York: J. Wiley & Sons, 1986.
- 20H. W. Coleman and W. G. Steele, Experimentation and Uncertainty Analysis for Engineers. New York: J. Wiley & Sons, 1999.
- 21D. C. Montgomery, Design and Analysis of Experiments, 3rd ed., New York: J. Wiley & Sons, 1991.
- 22F. M. White, Fluid Mechanics. New York: McGraw-Hill Publishers, 1979.
- 23C. G. Caro, T. J. Pedley, R. C. Schroter, and W. A. Seed, The Mechanics of the Circulation. New York: Oxford University Press, 1978.
- 24T. J. Pedley, R. C. Schroter, and M. F. Sudlow, Flow and pressure drop in systems of repeatedly branching tubes. J. Fluid Mech. 1971; 46(part 2): 365–383.
- 25Y. Mori and W. Nakayama, Study on forced convective heat transfer in curved pipes. Int. J. Heat Mass Transfer 1965; 8: 67–82.
10.1016/0017-9310(65)90098-0 Google Scholar
- 26C. J. Drost, Vessel diameter-independent volume flow measurements using ultrasound. Proc. San Diego Biomedical Symposium 1978; 17: 299–302.
- 27L. C. Lynnworth, Ultrasonic flow meters. In: W. P. Mason and R. N. Thurston, eds., Physical Acoustics. New York: Academic Press, 1979.
- 28G. Beldi, A. Bosshard, O. M. Hess, U. Althaus, and B. H. Walpoth, Transit time flow measurement: experimental validation and comparison of three different systems. Ann. Thorac. Surg. 2000; 70: 212–217.
- 29A. E. Weyman, Principles and Practice of Echocardiography, 2nd ed., Philadelphia, PA: Lea & Febiger Publishers, 1994.
- 30C. T. Crowe, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and Particles. Boca Raton, FL: CRC Press, 1998.
10.1046/j.1365-8711.1999.02583.x Google Scholar
- 31G. Comte-Bellot, Hot-wire anemometry. Ann. Rev. Fluid Mech. 1976; 8: 209–232.
- 32R. M. Nerem, J. A. Rumberger, D. R. Gross, W. W. Muir, and G. L. Geiger, Hot film coronary artery velocity measurements in horses. Cardiovasc. Res. 1976; 10(3): 301–313.
- 33R. M. Nerem, J. A. Rumberger, D. R. Gross, R. L. Hamlin, and G. L. Geiger, Hot film anemometer velocity measurements of arterial blood flow in horses. Circ. Res. 1974; 34(2): 193–203.
- 34H. L. Falsetti, R. J. Carroll, R. D. Swope, and C. J. Chen, Turbulent blood flow in the ascending aorta of dogs. Cardiovasc. Res. 1983; 17(7): 427–436.
- 35J. T. Baldwin, J. M. Tarbell, S. Detusch, D. B. Gaselowitz, and G. Rosenberg, Hotfilm wall shear probe measurements inside a ventricular assist device. J. Biomech. Eng. 1988; 110(4): 326–333.
- 36J. T. Baldwin, K. M. Tarbell, S. Deutsch, and D. B. Geselowitz, Wall shear stress measurements in a ventricular assist device. J. BioMech. Eng. 1988; 110: 326–333.
- 37J. R. Batten and R. M. Nerem, Model study of flow in curved and planar arterial bifurcations. Cardiovasc. Res. 1982; 16(4): 178–186.
- 38H. H. Brunn, Hot Wire Anemometry: Principles and Signal Analysis. New York: Oxford University Press, 1995.
- 39D. E. Stock, ed., Thermal anemometry 1993. Proc. 3rd Int. Symposium on Thermal Anemomety - ASME Fluids Engineering Conference, Washington, DC, FED Vol. 167, 1993.
- 40C. M. Otto, The Practice of Clinical Echocardiography. Philadelphia PA: W.B. Saunders Co., 1997.
- 41E. G. Cape, N. C. Nanda, and A. P. Yoganathan, Quantification of regurgitant flow through Bileaflet heart valves: theoretical and in vitro studies. Ultrasound Med. Biol. 1993; 19: 461–468.
- 42E. L. Hahn, Detection of sea-water motion by nuclear pre-emission. J. Geophys. Res. 1960; 65: 776–777.
- 43D. N. Ku, C. L. Biancheri, R. I. Pettigrew, et al., Evaluation of magnetic resonance velocimetry for steady flow. J. Biomech. Eng. 1990; 112: 464–472.
- 44R. I. Pettigrew, Magnetic resonance in cardiovascular imaging. In: B. L. Zaret, et al. eds., Frontiers in Cardiovascular Imaging. New York: Raven Press, 1993, Chapter 9.
- 45J. R. Singer and L. E. Crooks, Nuclear magnetic resonance blood flow measurements in the human brain. Science 1983; 221: 654–656.
- 46P. R. Moran, R. A. Moran, and N. Karstaedt, Verification and evaluation of internal flow and motion: true magnetic resonance imaging by the phase gradient modulation method. Radiology 1985; 154(2): 433–441.
- 47D. J. Bryant, J. A. Payne, D. N. Firmin, and D. B. Longmore, Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J. Comp. Assist. Tomogr. 1984; 8: 588–593.
- 48T. Matsuda, K. Shimizu, T. Sakurai et al., Measurement of aortic blood flow with MR imaging: comparative study with Doppler ultrasound. Radiology 1987; 162: 857–861.
- 49R. R. Edelman, P. M. Heinrich, J. Kleefield, and M. S. Silver, Quantification of blood flow with dynamic MR imaging and presaturation bolus tracking. Radiology 1989; 171: 551–556.
- 50P. R. Moran, A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn. Res. Imaging 1982; 1: 197–203.
- 51G. P. Chatzimavroudis, J. N. Oshinski, R. H. Franch et al., Evaluation of the precision of magnetic resonance phase velocity mapping for blood flow measurements. J. Card. Mag. Res. 2001; 3: 11–19.
- 52D. N. Firmin, G. L. Nayler, P. J. Kilner, and D. B. Longmore, The application of phase shifts in NMR for flow measurement. Mag. Res. Med. 1990; 14: 230–241.
- 53H. Zhang, S. S. Halliburton, R. D. White, and G. P. Chatzimavroudis, Fast measurements of flow through mitral regurgitant orifices with magnetic resonance phase velocity mapping. Ann. Biomed. Eng. 2004; 32(12): 1618–1627.
- 54K. A. Kraft, D. Y. Fei, and P. P. Fatouros, Quantitative phase-velocity MR imaging of in-plane laminar flow: effect of fluid velocity, vessel diameter, and slice thickness. Med. Phys. 1992; 19: 79–85.
- 55J. Suzuki, G. R. Caputo, C. Kondo, and C. B. Higgins, Cine MR imaging of valvular heart disease: display and imaging parameters affect the size of the signal void caused by valvular regurgitation. Am. J. Roentgenol. 1990; 155: 723–727.
- 56H. Zhang, S. S. Halliburton, J. R. Moore, O. P. Simonetti et al., Ultrafast flow quantification with segmented k-space magnetic resonance phase velocity mapping. Ann. Biomed. Eng. 2002; 30: 120–128.
- 57P. G. Walker, S. Oyre, E. M. Pedersen, K. Houlind, F. S. Guenet, and A. P. Yoganathan, A new control volume method for calculating valvular regurgitation. Circ. 1995; 92: 579–586.
- 58G. P. Chatzimavroudis, J. N. Oshinski, R. I. Pettigrew et al. Quantification of mitral regurgitation with magnetic resonance phase velocity mapping using a control volume method. J. Mag. Reson. Imag. 1998; 8: 577–582.
- 59L. E. Drain, The Laser Doppler Technique. New York: J. Wiley & Sons, 1980.
- 60F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry. San Diego, CA: Academic Press, 1976.
- 61Edwards and V. Robert, Report of the special panel on statistical particle bias problems in laser anemometry. J. Fluids Eng. Transactions of the ASME 1987; 109(2): 87–93.
10.1115/1.3242646 Google Scholar
- 62G. Tomonaga, H. Mitake, N. Hoki, and F. Kajiya, Measurement of point velocity in the canine coronary artery by laser Doppler velocimeter with optical fiber. Jap. J. Surg. 1981; 11(4): 226–231.
- 63K. B. Manning, T. M. Przybysz, A. A. Fontaine, J. M. Tarbell, and S. Deutsch, Near field flow characteristics of the Bjork–Shiley monostrut valve in a modified single shot valve chamber. ASAIO J. 2005; 51(2): 133–138.
- 64J. T. Ellis, T. M. Healy, A. A. Fontaine, M. W. Westin, C. A. Jarret, R. Saxena, and A. P. Yoganathan, An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves. J. Heart Valve Disease 1996; 5: 600–606.
- 65M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide. New York: Springer, 1998.
10.1007/978-3-662-03637-2 Google Scholar
- 66P. Hochareon, K. B. Manning, A. A. Fontaine, J. Tarbell, and S. Deutsch, Correlation of in vivo clot deposition with the flow characteristics in the 50cc Penn State artificial heart: a preliminary study. J. ASAIO 2004; 50(6): 537–542.
- 67L. A. Oley, K. B. Manning, A. A. Fontaine, and S. Deutsch, Off design considerations of the 50cc Penn State ventricular assist device. Art. Organs, 2005, in print.
- 68P. Hochareon, Development of particle image velocimetry (PIV) for wall shear stress estimation within a 50cc Penn State artificial heart ventricular chamber, Ph.D. thesis, Bioengineering Department, Penn State University, University Park, PA, 2003.
- 69S. J. Lee and G. B. Kim, X-ray particle image velocimetry for measuring quantitative flow information inside opaque objects. J. Appl. Phys. 2003; 94: 3620–3623.
- 70D. P. Hart, Super-resolution PIV by recursive local correlation. J. Visualization 1999; 10: 1–10.
- 71D. P. Hart, PIV error correction. Exp. Fluids 2000; 29(1): 13–22.
- 72K. T. Christensen, The influence of peak-locking errors on turbulence statistics computed from PIV ensembles. Experiments in Fluids 2004; 36(3): 484–497.
- 73Y. A. Hassan and O. G. Phillip, A new artificial neural network tracking technique for particle image velocimetry. Exp. Fluids 1997; 23(2): 145–154.
- 74X. Lui and J. Katz, Measurements of pressure distribution in a cavity flow by integrating the material acceleration. Proc. 2004 Heat Transfer and Fluids Engineering Conf., ASME HT-FED04-56373, July, 2004.
- 75R. J. Adrian, Laser velocimetry. In: Fluid Mechanics Measurements. New York: Hemisphere Publishing, 1983.