Exercise Physiology
Brian J. Whipp
University of Leeds, Division of Respiratory and Critical Care Physiology and Medicine, Leeds, United Kingdom
Search for more papers by this authorBrian J. Whipp
University of Leeds, Division of Respiratory and Critical Care Physiology and Medicine, Leeds, United Kingdom
Search for more papers by this authorAbstract
Exercise intolerance occurs when a person cannot sustain a required work rate sufficiently long for the successful completion of the task. The ability to sustain an exercise task depends largely on the ability to transport oxygen to its utilization site as the terminal oxidant of the mitochondrial electron transport chain in skeletal muscle, and to clear the resulting metabolically produced carbon dioxide and lactic acid. This process requires the kinetics of the associated ventilatory, pulmonary gas exchange, and cardiovascular system responses to be closely coordinated with the intramuscular requirements for ATP utilization and resynthesis. As the kinetic features of these system responses are highly intensity dependent, any meaningful interpretational frame of reference has to provide a rigorous definition of exercise intensity that takes into account individual differences in the threshold for blood lactate increase relative to maximal aerobic capacity. This article provides an introduction to the fundamentals of normal operation of these systems and their integrated patterns of response to particular stress profiles.
Bibliography
- 1B. Saltin and P. D. Gollnick, Skeletal muscle adaptability: significance for metabolism and performance. In: L. D. Peachey, R. H. Adrian, and S. R. Geiger, eds., Handbook of Physiology, Sect. 10, Skeletal Muscle. Washington, DC: American Physiological Society, 1983. pp. 555–631.
- 2D. A. Jones and J. M. Round, Skeletal Muscle in Health and Disease. Manchester, UK: Manchester Univ. Press, 1990.
- 3R. Maughan, M. Gleeson, and P. L. Greenhaff, Biochemistry of Exercise and Training. Oxford, UK: Oxford Univ. Press, 1997.
- 4A. J. Sargeant, Neuromuscular determinants of human performance. In: B. J. Whipp and A. J. Sargeant, eds., Physiological Determinants of Exercise Tolerance in Humans. London, UK: Portland Press, 1999. pp. 13–28.
- 5D. Pette, The adaptive potential of skeletal muscle fibers. Can. J. Appl. Physiol. 2002; 27: 423–448.
- 6E. E. Spangenburg and F. W. Booth, Molecular regulation of individual skeletal muscle fibre types. Acta Physiol. Scand. 2003; 178: 413–424.
- 7M. J. Rennie, H. Wackerhage, E. E. Spangenburg, and F. W. Booth, Control of the size of the human muscle mass. Annu. Rev. Physiol. 2004; 66: 799–828.
- 8B. Saltin, J. Henriksen, E. Nygaard, and P. Andersen, Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. In: P. Milve, ed., The Marathon: Physiological, Medical, Epidemiological, and Psychological Studies, Ann. N. Y. Acad. Sci. 1977; 301: 3–44.
- 9R. S. Williams and P. D. Neufer, Regulation of gene expression in skeletal muscle by contractile activity. In: L. B. Rowell and J. T. Shepherd, eds., Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. Bethesda, MD: American Physiological Society, 1996. pp. 1124–1150.
- 10G. Goldspink, Gene expression in muscle in response to exercise. J. Muscle Res. Cell Motil. 2003; 24: 121–126.
- 11A. M. Gordon, E. Homsher, and M. Regnier, Regulation of contraction in striated muscle. Physiol. Rev. 2000; 80: 853–924.
- 12R. A. Meyer and J. M. Foley, Cellular processes integrating the metabolic response to exercise. In: L. B. Rowell and J. T. Shepherd, eds., Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. Bethesda, MD: American Physiological Society, 1996. pp. 841–869.
- 13R. J. Connett and K. Sahlin, Control of glycolysis and glycogen metabolism. In: L. B. Rowell and J. T. Shepherd, eds., Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. Bethesda, MD: American Physiological Society, 1996. pp. 870–911.
- 14K. Sahlin, M. Tonkonogi, and K. Soderlund, Energy supply and muscle fatigue in humans. Acta Physiol. Scand. 1998; 162: 261–266.
- 15M. E. Nevill and P. L. Greenhaff, Skeletal muscle metabolism during high-intensity exercise in humans. In: B. J. Whipp and A. J. Sargeant, eds., Physiological Determinants of Exercise Tolerance in Humans. London, UK: Portland Press, 1999. pp. 49–60.
- 16B. J. Whipp, Dynamics of pulmonary gas exchange during exercise in man. Circ. 1987; VI: 18–28.
- 17K. Wasserman and R. Casaburi, Acid-base regulation during exercise in humans. In: B. J. Whipp and K. Wasserman, eds., Pulmonary Physiology and Pathophysiology of Exercise. New York: Dekker, 1991. pp. 405–448.
- 18K. Wasserman, B. J. Whipp, S. N. Koyal, and W. L. Beaver, The anaerobic threshold and respiratory gas exchange during exercise. J. Appl. Physiol. 1973; 35: 236–242.
- 19W. L. Beaver, K. Wasserman, and B. J. Whipp, A new method for detecting the anaerobic threshold by gas exchange. J. Appl. Physiol. 1986; 60: 2020–2027.
- 20B. J. Whipp, S. A. Ward, and K. Wasserman, Respiratory markers of the anaerobic threshold. Adv. Cardiol. 1986; 35: 47–64.
- 21J. E. Hansen, D. Y. Sue, and K. Wasserman, Predicted values for clinical exercise testing. Am. Rev. Respir. Dis. 1984; 129(Suppl): S49–S55.
10.1164/arrd.1984.129.2P2.S49 Google Scholar
- 22G. A. Gaesser and G. A. Brooks, Muscular efficiency during steady-rate exercise: effects of speed and work rate. J. Appl. Physiol. 1975; 38: 1132–1139.
- 23D. A. Jones, Muscle fatigue during high intensity exercise. In: B. J. Whipp and A. J. Sargeant, eds., Physiological Determinants of Exercise Tolerance in Humans. London, UK: Portland Press, 1999. pp. 1–11.
- 24R. H. Fitts, Cellular, molecular, and metabolic basis of muscle fatigue. In: L. B. Rowell and J. T. Shepherd, eds., Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. Bethesda, MD: American Physiological Society, 1996. pp. 1151–1183.
- 25H. Westerblad, D. G. Allen, and J. Lannergren, Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol. Sci. 2002; 17: 17–21.
- 26H. Westerblad and D. G. Allen, Cellular mechanisms of skeletal muscle fatigue. Adv. Exp. Med. Biol. 2003; 538: 563–570.
- 27S. K. Powers, K. C. DeRuisseau, J. Quindry, and K. L. Hamilton, Dietary antioxidants and exercise. J. Sports Sci. 2004; 22: 81–94.
- 28M. P. Heyes, E. S. Garnett, and G. Coates, Central dopaminergic activity influences rats’ ability to exercise. Life Sci. 1985; 36: 671–677.
- 29I. Acworth, J. Nicholass, B. Morgan, and E. A. Newsholme, Effect of sustained exercise on concentrations of plasma aromatic and branched-chain amino acids and brain amines. Biochem. Biophys. Res. Commun. 1986; 29(137): 149–153.
- 30R. Meeusen and K. DeMeirleir, Exercise and brain neurotransmission. Sports Med. 1995; 20: 160–188.
- 31J. M. Davis and S. P. Bailey, Possible mechanisms of central nervous system fatigue during exercise. Med. Sci. Sports Exerc. 1997; 29: 45–57.
- 32P. M. Jakeman, J. E. Hawthorne, S. R. J. Maxwell, M. J. Kendall, and G. Holder, Evidence for downregulation of hypothalamic 5-hydroxytryptamine receptor function in endurance-trained athletes. Exp. Physiol. 1994; 79: 461–464.
- 33A. M. O. Bakheit, P. O. Behan, T. G. Dinan, C. E. Gray, and V. O’Keane, Possible upregulation of hypothalamic 5-hydroxytryptamine receptors in patients with postviral fatigue syndrome. Brit. Med. J. 1992; 304: 1010–1012.
- 34O. L. Wade and J. M. Bishop, Cardiac Output and Regional Blood Flow. Oxford, UK: Blackwell, 1962.
- 35J. P. Clausen, Effect of physical training on cardiovascular adjustments to exercise in man. Physiol. Rev. 1977; 57: 779–815.
- 36M. B. Higginbotham, K. G. Morris, R. S. Williams, P. A. McHale, R. E. Coleman, and F. R. Cobb, Regulation of stroke volume during submaximal and maximal upright exercise in normal man. Circ. Res. 1986; 58: 281–291.
- 37L. B. Rowell, Human Cardiovascular Control. New York: Oxford Univ. Press, 1993.
10.1093/oso/9780195073621.001.0001 Google Scholar
- 38J. S. Janicki, D. D. Sheriff, J. L. Robotham, and R. A. Wise, Cardiac output during exercise: contributions of the cardiac, circulatory and respiratory systems. In: L. B. Rowell and J. T. Shepherd, eds., Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. Bethesda, MD: American Physiological Society, 1996. pp. 649–704.
- 39B. J. Whipp, P. D. Wagner, and A. Agusti, Factors determining the response to exercise in healthy subjects. In: J. Roca and B. J. Whipp, eds., Clinical Exercise Testing, Europ. Respir. Monograph vol. 2, no. 6, European Respiratory Journals Ltd, Sheffield, 1997.
- 40M. H. Laughlin, R. J. Korthuis, D. J. Duncker, and R. J. Bache, Control of blood flow to cardiac and skeletal muscle during exercise. In: L. B. Rowell and J. T. Shepherd, eds., Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. Bethesda, MD: American Physiological Society, 1996. pp. 705–769.
- 41L. Walloe and J. Wesche, Time course and magnitude of blood flow changes in the human quadriceps muscles during and following rhythmic exercise. J. Physiol. (Lond.). 1988; 405: 257–273.
- 42B. J. Whipp, S. A. Ward, R. E. Smith, and S. T. Hussain, The dynamics of pulmonary O2 uptake and femoral artery blood flow during moderate intensity exercise in humans. J. Physiol. (Lond.) 1995; 483: 130P.
- 43P. Andersen and B. Saltin, Maximal perfusion of skeletal muscle in man. J. Physiol. (Lond.) 1985; 366: 233–249.
- 44G. Radegran and Y. Hellsten, Adenosine and nitric oxide in exercise-induced human skeletal muscle vasodilatation. Acta Physiol. Scand. 2000; 168: 575–591.
- 45B. Chavoshan, M. Sander, T. E. Sybert, J. Hansen, R. G. Victor, and G. D. Thomas, Nitric oxide-dependent modulation of sympathetic neural control of oxygenation in exercising humn skeletal muscle. J. Physiol. (Lond.) 2002; 540: 377–386.
- 46R. Boushel, Metabolic control of muscle blood flow during exercise in humans. Can. J. Appl. Physiol. 2003; 28: 754–773.
- 47B. J. Whipp and S. A. Ward, The coupling of ventilation to pulmonary gas exchange during exercise. In: B. J. Whipp and K. Wasserman, eds., Pulmonary Physiology and Pathophysiology of Exercise. New York: Dekker, 1991. pp. 271–307.
- 48B. J. Whipp, The bioenergetic and gas-exchange basis of exercise testing. Clin. Chest Med. 1994; 15: 173–192.
- 49D. Linnarsson, Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol. Scand. 1974; 415(Suppl): 1–68.
- 50R. L. Hughson, Exploring cardiorespiratory control mechanisms through gas exchange dynamics. Med. Sci. Sports Exerc. 1990; 22: 72–79.
- 51B. J. Whipp and F. Öyzener, The kinetics of exertional oxygen uptake: assumptions and inferences. Medicina della Sport. 1998; 51: 139–149.
- 52B. J. Whipp, H. B. Rossiter, and S. A. Ward, Exertional oxygen-uptake kinetics: a stamen of stamina? Biochem. Soc. Trans. 2002; 30: 237–247.
- 53B. Grassi, D. C. Poole, R. S. Richardson, D. R. Knight, B. K. Erickson, and P. D. Wagner, Muscle O2 uptake kinetics in humans: implications for metabolic control. J. Appl. Physiol. 1996; 80: 988–998.
- 54B. Chance and C. M. Williams, Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 1955; 217: 383–393.
- 55S. P. Bessman and P. J. Geiger, Transport of energy in muscle: the phosphorylcreatine shuttle. Science 1981; 211: 448–452.
- 56V. A. Saks, T. Kaambre, P. Sikk, M. Eimre, E. Orlova, K. Paju, A. Piirsoo, F. Appaix, L. Kay, V. Regitz-Zagrosek, E. Fleck, and E. Seppet, Intracellular energetic units in red muscle cells. Biochem. J. 2001; 356: 643–657.
- 57D. F. Wilson, Factors affecting the rate and energetics of mitochondrial oxidative phosphorylation. Med. Sci. Sports Exerc. 1994; 26: 37–43.
- 58T. J. Barstow, N. Lamarra, and B. J. Whipp, Modulation of muscle and pulmonary O2 uptakes by circulatory dynamics during exercise. J. Appl. Physiol. 1990; 68: 979–989.
- 59T. J. Barstow and P. A. Molé, Linear and non-linear characteristics of oxygen uptake kinetics during heavy exercise. J. Appl. Physiol. 1991; 71: 2099–2106.
- 60D. C. Poole, T. J. Barstow, G. A. Gaesser, W. T. Willis, and B. J. Whipp,
slow component: physiological and functional significance. Med. Sci. Sports Exerc. 1994; 26: 1354–1358.