Cell Adhesion Molecules – Conversational Signalers
Mike R. Douglas
University of Birmingham, MRC Centre for Immune Regulation, Institute for Biomedical Research, Division of Neurosciences, Birmingham, United Kingdom
Search for more papers by this authorChristopher D. Buckley
University of Birmingham, MRC Centre for Immune Regulation, Institute for Biomedical Research, Division of Immunity and Infection, Birmingham, United Kingdom
Search for more papers by this authorMike R. Douglas
University of Birmingham, MRC Centre for Immune Regulation, Institute for Biomedical Research, Division of Neurosciences, Birmingham, United Kingdom
Search for more papers by this authorChristopher D. Buckley
University of Birmingham, MRC Centre for Immune Regulation, Institute for Biomedical Research, Division of Immunity and Infection, Birmingham, United Kingdom
Search for more papers by this authorAbstract
Cellular actions and fates—gene expression, differentiation, proliferation, apoptosis, and migration—are modulated by a sequence of signals that include the multiple adhesive contacts found between cells and their extracellular environment. A family of cell surface proteins, termed cell adhesion molecules, are important in mediating interactions. These proteins are segregated into distinct families with a wide range of physical properties. Some members exhibit strong binding properties, important for the maintenance of tissue integrity, whereas other members form weaker, more dynamic binding interactions, which are important during cellular migration processes. Research has demonstrated that these proteins are extremely versatile biological players, not only providing a form of cellular glue but also providing a means for coordinating a wide range of intracellular signaling events (including receptor tyrosine kinases and phosphatases), which have important functional consequences for processes as diverse as gene expression, cellular differentiation, migration, proliferation, and apoptosis. This review will briefly highlight the physical and biochemical properties that categorize cell surface molecules as adhesion molecules and demonstrate how these proteins form important modulators of cellular conversation by acting as assembly points for cytosolic adaptor proteins. The examples in this review are restricted to the signaling events coordinated by the integrin, immunoglobulin superfamily (Ig) cell adhesion molecules, cadherin/catenin families, and the selectins. These families exhibit a broad spectrum of biophysical and biochemical characteristics and yet all clearly demonstrate common dynamic interactions, forming multiprotein complexes linked to intracellular proteins and resultant signaling events.
Bibliography
- 1R. O. Hynes, The impact of molecular biology on models for cell adhesion. BioEssays 1994; 16: 663–669.
- 2A. Woods and J. R. Couchman, Syndecans: synergistic activators of cell adhesion. Trends Cell. Biol. 1998; 8: 189–192.
- 3D. Leahy, Implications of atomic-resolution structures for cell adhesion. Annu. Rev. Cell. Dev. Biol. 1997; 13: 363–393.
- 4C. Chothia and E. Y. Jones, The molecular structure of cell adhesion molecules. Annu. Rev. Biochem. 1997; 66: 823–862.
- 5D. Vestweber and J. E. Blanks, Mechanisms that regulate the function of the selectins and their ligands. Physiolog. Rev. 1999; 79: 181–213.
- 6M. W. Nicholson, A. N. Barclay, M. S. Singer, S. D. Rosen, and A. Van der Merwe, Affinity and kinetic analysis of L-selectin (CD62L) binding to glycosylation-dependent cell-adhesion molecule-1. J. Biol. Chem. 1998; 273: 749–755.
- 7P. Mehta, R. D. Cummings, and R. P. McEver, Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1. J. Biol. Chem. 1998; 273: 32506–32513.
- 8R. Alon, H. Rossiter, X. Wang, T. A. Springer, and T. S. Kupper, Distinct cell surface ligands mediate T lymphocyte attachment and rolling on P- and E-selectin under physiological flow. J. Cell. Biol. 1994; 127: 1485–1495.
- 9M. B. Lawrence, G. S. Kansas, E. J. Kunkel, and K. Ley, Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L, P, E). J. Cell. Biol. 1997; 136: 717–727.
- 10C. V. Carman and T. A. Springer, Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr. Opin. Cell. Biol. 2003; 15: 547–556.
- 11W. A. Muller, Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003; 24: 326–333.
- 12A. Huttenlocher, R. R. Sandborg, and A. F. Horwitz, Adhesion in cell migration. Curr. Opin. Cell. Biol. 1995; 7: 697–706.
- 13M. S. Diamond and T. A. Springer, The dynamic regulation of integrin adhesiveness. Curr. Biol. 1994; 6: 506–517.
- 14M. J. Humphries and P. Newham, The structure of cell-adhesion molecules. Trends Cell. Biol. 1998; 8: 78–83.
- 15P. E. Hughes, M. W. Renshaw, M. Pfaff, J. Forsyth, V. M. Keivens, M. A. Schwartz, and M. H. Ginsberg, Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 1997; 88: 521–530.
- 16P. Keely, L. Parise, and R. Juliano, Integrins and GTPases: role in tumour cell growth control, motility, and invasion. Trends Cell. Biol. 1998; 8: 101–106.
- 17L. V. Parise, J. W. Lee, and R. L. Juliano, New aspects of integrin signaling in cancer. Semin. Cancer Biol. 2000; 10: 407–414.
- 18P. E. Hughes and M. Pfaff, Integin affinity modulation. Trends Cell. Biol. 1998; 8: 359–364.
- 19M. Lub, V. van Kooyk, and C. G. Figdor, The ins and outs of LFA-1. Immunol. Today 1995; 16: 479–483.
- 20Y. Van Kooyk and C. G. Figdor, Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr. Opin. Cell. Biol. 2000; 12: 542–547.
- 21E. J. Brown, Phagocytosis. BioEssays 1995; 17: 109–117.
- 22R. J. Faul, N. L. Kovach, J. M. Harlan, and M. H. Ginsberg, Stimulation of integrin mediated adhesion of T lymphocytes and monocytes: two mechanisms with divergent biological consequences. J. Experimen. Med. 1994; 179: 1307–1316.
- 23B. M. Jockusch, P. Bubeck, K. Giehl, M. Kroemker, J. Moschner, M. Rothkegel, M. Rudiger, K. Schluter, G. Stanke, and J. Winkler, The molecular architecture of focal adhesions. Ann. Rev. Cell. Dev. Biol. 1995; 11: 379–416.
- 24R. O. Hynes, Integins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11–25.
10.1016/0092-8674(92)90115-S Google Scholar
- 25P. Newham and M. J. Humphries, Integrin adhesion receptors: structure, function and implications for biomedicine. Molec. Med. Today 1996; 2: 304–313.
- 26E. J. Brown, Adhesive interactions in the immune system. Trend Cell Biol. 1997; 7: 289–295.
- 27T. A. Springer, Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Ann. Rev. Physiol. 1995; 57: 827–872.
- 28M. Stewart, M. Thiel, and N. Hogg, Leukocyte integrins. Curr. Opin. Cell. Biol. 1995; 7: 690–696.
- 29D. D. Schlaepfer and T. Hunter, Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell. Biol. 1998; 8: 151–157.
- 30M. A. Schwartz, M. D. Schaller, and M. H. Ginsberg, Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell. Dev. Biol. 1995; 11: 549–599.
- 31A. E. Aplin, A. Howe, S. K. Alahari, and R. L. Juliano, Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 1998; 50: 197–263.
- 32F. G. Giancotti and E. Ruoslahti, Integrin signalling. Science 1999; 285: 1028–1032.
- 33J. T. Parsons, K. H. Martin, J. K. Slack, J. M. Taylor, and S. A. Weed, Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 2000; 19: 5606–5613.
- 34M. D. Schaller, The focal adhesion kinase. J. Endocrinol. 1996; 150: 1–7.
- 35J. Gao, K. E. Zoller, M. H. Ginsburg, J. S. Brugge, and S. J. Shattil, Regulation of the pp72syk protein tyrosine kinase by platelet integrin alpha IIb beta 3. EMBO J. 1997; 16: 6414–6425.
- 36K. Wennerberg, A. Armulik, T. Sakai, M. Karlsson, R. Fassler, E. M. Schaefer, D. F. Mosher, and S. Johansson, The cytoplasmic tyrosines of integrin subunit beta1 are involved in focal adhesion kinase activation. Mol. Cell. Biol. 2000; 20: 5758–5765.
- 37C. R. Hauck, C. K. Klingbeil, and D. D. Schlaepfer, Focal adhesion kinase functions as a receptor-proximal signaling component required for directed cell migration. Immunol. Res. 2000; 21: 293–303.
- 38T. H. Lin, A. E. Aplin, Y. Shen, Q. Chen, M. Schaller, L. Romer, I. Aukhil, and R. L. Juliano, Integrin-mediated activation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblasts. J. Cell. Biol. 1997; 136: 1385–1395.
- 39K. K. Wary, F. Mainiero, S. J. Isakoff, E. E. Marcantonio, and F. G. Giancotti, The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 1996; 87: 733–743.
- 40K. K. Wary, A. Mariotti, C. Zurzolo, and F. G. Giancotti, A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 1998; 94: 625–634.
- 41E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, Taking cell-matrix adhesions to the third dimension. Science 2001; 294: 1708–1712.
- 42L. Kjoller and A. Hall, Signaling to Rho GTPases. Exp. Cell. Res. 1999; 25: 166–179.
- 43S. M. Schoenwaelder and K. Burridge, Bidirectional signaling between the cytoskeleton and integrins. Curr. Opin. Cell. Biol. 1999; 11: 274–286.
- 44D. C. Edwards, L. C. Sanders, G. M. Bokoch, and G. N. Gill, Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell. Biol. 1999; 1: 253–259.
- 45M. Maekawa, T. Ishizaki, S. Boku, N. Watanabe, A. Fujita, A. Iwamatsu, T. Obinata, K. Ohashi, K. Mizuno, and S. Narumiya, Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 1999; 285: 895–898.
- 46T. Sumi, K. Matsumoto, Y. Takai, and T. Nakamura, Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2. J. Cell. Biol. 1999; 147: 1519–1532.
- 47H. N. Higgs and T. D. Pollard, Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. J. Biol. Chem. 1999; 274: 32531–32534.
- 48H. Miki, H. Yamaguchi, S. Suetsugu, and T. Takenawa, IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 2000; 408: 732–735.
- 49R. Horstkorte, M. Schachner, J. P. Magyar, T. Vorherr, and B. Schmitz, The fourth immunoglobulin-like domain of N-CAM contains a carbohydrate recognition domain for oligomannosidic glycans implicated in association with L1 and neurite outgrowth. J. Cell. Biol. 1993; 121: 1409–1421.
- 50R. Probstmeier, K. Kuhn, and M. Schachner, Binding properties of the neural cell adhesion molecule to different components of the extracellular matrix. J. Neurochem. 1989; 53: 1794–1801.
- 51K. Bruckner and R. Klein, Signaling by Eph receptors and their ephrin ligands. Curr. Opin. Neurobiol. 1998; 8: 375–382.
- 52K. L. Crossin and L. A. Krushel, Cellular signalling by neural cell adhesion molecules of the immunoglobulin superfamily. Dev. Dyn. 2000; 218: 260–279.
10.1002/(SICI)1097-0177(200006)218:2<260::AID-DVDY3>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 53M. Tessier-Lavigne and C. S. Goodman, The molecular biology of axon guidance. Science 1996; 274: 1123–1133.
- 54E. J. Williams, J. Furness, F. S. Walsh, and P. Doherty, Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM and N-cadherin. Neuron 1994; 583–594.
- 55H. E. Beggs, S. C. Baragona, J. J. Hemperly, and P. F. Maness, NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC-related tyrosine kinase p59(fyn). J. Biol. Chem. 1997; 272: 8310–8319.
- 56P. F. Maness, H. E. Beggs, S. G. Klinz, and W. R. Morse, Selective neural cell adhesion molecule signaling by Scr family tyrosine kinases and tyrosine phosphatases. Perspect. Dev. Neurobiol. 1996; 4: 169–181.
- 57R. S. Schmid, R. D. Graff, M. D. Schaller, S. Chen, M. Schachner, J. J. Hemperly, and P. F. Maness, NCAM stimulates the Ras-MAPK pathway and CREB phosphorylation in neuronal cells. J. Neurobiol. 1999; 38: 542–558.
10.1002/(SICI)1097-4695(199903)38:4<542::AID-NEU9>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 58P. Newman, The biology of PECAM-1. J. Clin. Invest. 1997; 99: 3–8.
- 59P. Newman, C. Hillery, R. Albrecht, L. Parise, M. Berndt, A. Mazurov, L. Dunlop, J. Zhang, and S. Rittenhouse, Activation-dependent changes in human platelet PECAM-1: phosphorylation, cytoskeletal association, and surface membrane redistribution. J. Cell. Biol. 1992; 119: 239–246.
- 60M. Y. Cao, M. Huber, N. Beauchemin, J. Famiglietti, S. M. Albeda, and A. Veillette, Regulation of mouse PECAM-1 tyrosine phosphorylation by the Src and Csk families of protein-tyrosine kinases. J. Biol. Chem. 1998; 273: 15765–15772.
- 61N. Ilan, L. Cheung, E. Pinter, and J. A. Madri, PECAM-1 (CD31): a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation. J. Biol. Chem. 2000; 275: 21435–21443.
- 62D. E. Jackson, C. M. Ward, R. Wang, and P. J. Newman, The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signalling complex during platelet aggregation. J. Biol. Chem. 1997; 272: 6986–6993.
- 63T. Lu, L. G. Yan, and J. A. Madri, Integrin engagement mediates tyrosine dephosphorylation on platelet-endothelial cell adhesion molecule 1. Proc. Natl. Acad. Sci. USA 1996; 93: 11808–11813.
- 64T. T. Lu, M. Barreuther, S. Davis, and J. A. Madri, Platelet endothelial cell adhesion molecule-1 is phosphorylatable by c-Src, binds Src-Src homology 2 domain and exhibits immunoreceptor tyrosine-based activation motif-like properties. J. Biol. Chem. 1997; 272: 14442–14446.
- 65M. Osawa, M. Masuda, K.-I. Kusano, and K. Fujiwara, Evidence for a role of platelet endothelial cell adhesion molecule 1 and phosphoinositide 3-kinase in human neutrophils. J. Cell. Biol. 2002; 158: 1–13.
- 66K. Sagawa, W. Swaim, J. Zhang, E. Unsworth, and R. P. Siraganian, Aggregation of the high affinity IgE receptor results in the tyrosine phosphorylation of the surface adhesion protein PECAM-1 (CD31). J. Biol. Chem. 1997; 272: 13412–13418.
- 67N. J. Pumphrey, V. Taylor, S. Freeman, M. R. Douglas, P. F. Bradfield, S. P. Young, J. M. Lord, M. J. Wakelam, I. N. Bird, M. Salmon, and C. D. Buckley, Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31. FEBS Lett. 1999; 450: 77–83.
- 68P. J. Newman, Switched at birth: a new family for PECAM-1. J. Clin. Invest. 1999; 103: 5–9.
- 69S. T. Suzuki, Structural and functional diversity of cadherin superfamily: are new members of cadherin superfamily involved in signal transduction pathway? J. Cell. Biochem. 1996; 61: 531–542.
10.1002/(SICI)1097-4644(19960616)61:4<531::AID-JCB6>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 70V. Vasiokhin, C. Bauer, M. Yin, and E. Fuchs, Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 2000; 100: 209–219.
- 71N. K. Noren, B. P. Liu, K. Burridge, and B. Kreft, p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell. Biol. 2000; 150: 567–580.
- 72M. Fukata and K. Kaibuchi, Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat. Rev. Mol. Cell. Biol. 2001; 2: 887–897.
- 73S. Kuroda, M. Fukata, M. Nakagawa, K. Fujii, T. Nakamura, T. Ookubo, I. Izawa, T. Nagase, N. Nomura, H. Tani, et al., Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science 1998; 281: 832–835.
- 74M. J. Wheelock and K. R. Johnson, Cadherin-mediated cellular signalling. Curr. Opin. Cell. Biol. 2003; 15: 509–514.
- 75M. Conacci-Sorrell, J. Zhurinsky, and A. Ben-Ze’ev, The cadherin-catenin adhesion system in signalling and cancer. J. Clin. Invest. 2002; 109: 987–991.
- 76R. T. Moon, B. Bowerman, M. Boutros, and N. Perrimon, The promise and perils of Wnt signalling through β-catenin. Science 2002; 296: 1644–1646.
- 77M. Shtutman, J. Zhurinsky, I. Simcha, C. Albanese, M. D’Amico, R. Pestell, and A. Ben-Ze’ev, The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. USA 1999; 96: 5522–5527.
- 78T. Liu, et al., G protein signalling from activated rat frizzled-1 to the β-catenin-Lef-Tcf pathway. Science 2001; 292: 1718–1722.
- 79S. Hirohashi and Y. Kanai, Cell adhesion system and human cancer morphogenesis. Cancer Sci. 2003; 94: 575–581.
- 80T. Hunter, Oncogene networks. Cell 1997; 88: 333–356.
- 81J. B. Lowe, Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr. Opin. Cell. Biol. 2003; 15: 531–538.
- 82V. Evangelista, S. Manarini, R. Sideri, S. Rotondo, and N. Martelli, Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signalling molecule. Blood 1999; 93: 876–885.
- 83S. I. Simon, Y. Hu, D. Westweber, and C. W. Smith, Neutrophil tethering on E-selectin activates beta 2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J. Immunol. 2000; 164: 4348–4358.
- 84J. E. Smolen, T. K. Petersen, C. Koch, S. J. O'Keefe, W. A. Hanlon, S. Seo, D. Pearson, M. C. Fossett, and S. I. Simon, L-selectin signalling of neutrophil adhesion and degranulation involves p38 mitogen-activated protein kinase. J. Biol. Chem. 2000; 275: 15876-15884.
- 85E. A. Clark and J. S. Brugge, Integrins and signal transduction pathways: the road taken. Science 1995; 268: 233–239.
- 86P. M. Comoglio, C. Boccaccio, and L. Trusolino, Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr. Opin. Cell. Biol. 2003; 15: 565–571.
- 87M. Perez-Moreno, C. Jamora, and E. Fuchs, Sticky business: orchestrating cellular signals at adherens junctions. Cell 2003; 112: 535–548.
- 88A. S. Yap and E. M. Kovacs, Direct cadherin-activated cell signalling: a view from the plasma membrane. J. Cell. Biol. 2003; 160: 11–16.
- 89U. Cavallaro, J. Niedermeyer, M. Fuxa, and G. Christofori, N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat. Cell. Biol. 2001; 3: 650–657.
- 90A. Shay-Salit, M. Shushy, E. Wolfovitz, H. Yahav, F. Breviario, E. Dejana, and N. Resnick, VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc. Natl. Acad. Sci. USA 2002; 99: 9462–9467.
FURTHER READING
- V. V. Kiselyov, Stuctural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 2003; 11: 691.