Adhesion of Bacteria
Natasa Mitik-Dineva
Swinburne University of Technology, Melbourne, Australia
Search for more papers by this authorPaul R. Stoddart
Swinburne University of Technology, Melbourne, Australia
Search for more papers by this authorRussell Crawford
Swinburne University of Technology, Melbourne, Australia
Search for more papers by this authorElena P. Ivanova
Swinburne University of Technology, Melbourne, Australia
Search for more papers by this authorNatasa Mitik-Dineva
Swinburne University of Technology, Melbourne, Australia
Search for more papers by this authorPaul R. Stoddart
Swinburne University of Technology, Melbourne, Australia
Search for more papers by this authorRussell Crawford
Swinburne University of Technology, Melbourne, Australia
Search for more papers by this authorElena P. Ivanova
Swinburne University of Technology, Melbourne, Australia
Search for more papers by this authorAbstract
The adhesion of bacteria to biological and nonbiological surfaces is of fundamental importance in regulating their interactions with the environment. A range of different strategies that are employed by bacteria for attachment are reviewed. This article describes the general principles that apply to mechanisms of adhesion, the current status of knowledge in understanding the drivers of bacterial adhesion, and the impact of surface characteristics on bacterial metabolic activity and biofilm formation.
Bibliography
- 1C. J. Whittaker, C. M. Klier, and P. E. Kolenbrander, Mechanisms of adhesion by oral bacteria. Annu. Rev. Microbiol. 1996; 50: 513–552.
- 2M. R. Parsek and P. K. Singh, Bacterial biofilms: an emerging link to pathogenesis. Annu. Rev. Microbiol. 2003; 57: 677–701.
- 3Y. Benito, C. Pin, M. L. Marin, M. L. Garcia, M. D. Selgas, and C. Clasas, Cell surface hydrophobicity and attachment of pathogenic and spoilage bacteria to meat surfaces. Meat Sci. 1997; 45: 419–425.
- 4W. Chen, F. Brühlmann, R. D. Richins, and A. Mulchandani, Engineering of improved microbes and enzymes for bioremediation. Curr. Opin. Biotechnol. 1999; 10: 137–141.
- 5A. Filloux and I. Vallet, Biofilm: set-up and organization of a bacterial community. Med. Sci. (Paris) 2003; 19: 77–83.
- 6M. W. Mittelman, Adhesion to biomaterials. In: Bacterial Adhesion: Molecular and Ecological Diversity. New York: Wiley, 1996.
- 7J. Ubbink and P. Schär-Zammaretti, Probing bacterial interactions: integrated approaches combining atomic force microscopy, electron microscopy and biophysical techniques. Micron. 2005; 36: 293–320.
- 8A. Razatos, Y. L. Ong, M. M. Sharma, and G. Georgiou, Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc. Natl. Acad. Sci. USA 1998; 95: 11059–11064.
- 9A. Razatos, Application of atomic force microscopy to study initial events of bacterial adhesion. Methods Enzymol. 2001; 337: 276–285.
- 10D. E. Caldwell, D. R. Korber, and J. R. Lawrence, Confocal laser microscopy and digital image analysis in microbial ecology. Advan. Microbial Ecol. 1992; 12: 1–67.
- 11H. C. van der Mei, J. de Vries, and H. J. Busscher, X-ray photoelectron spectroscopy for the study of microbiol cell surfaces. Surface Sci. Rep. 2000; 39: 1–24.
10.1016/S0167-5729(00)00003-0 Google Scholar
- 12K. Waar, H. C. van der Mei, H. J. Harmsen, J. E. Degener, and H. J. Busscher, Adhesion to bile drain materials and physicochemical surface properties of Enterococcus faecalis strains grown in the presence of bile. Appl. Environ. Microbiol. 2002; 68: 3855–3858.
- 13S. McEldowney and M. Fletcher, Effect of pH, temperature, and growth conditions on the adhesion of a gliding bacterium and three nongliding bacteria to polystyrene. Microbial Ecol. 1988; 16: 183–195.
- 14M. Pasmore, P. Todd, B. Pfiefer, M. Rhodes, and C. N. Bowman, Effect of polymer surface properties on the reversibility of attachment of Pseudomonas aeruginosa in the early stages of biofilm development. Biofouling 2002; 18: 65–71.
- 15R. J. Doyle and M. Rosenberg, Microbial Cell Surface Hydrophobicity. Washington, DC: American Society for Microbiology, 1990.
- 16H. J. Busscher, J. Sjollema, and H. C. van der Mei, Relative importance of surface free energy as a measure of hydrophobicity in bacterial adhesion to solid surfaces. In: Microbial Cell Surface Hydrophobicity. Washington, DC: American Society for Microbiology, 1990.
- 17M. C. M. van Loosdercht and A. J. B. Zehnder, Energetics of bacterial adhesion. Experiencia 1990; 46: 817–822.
10.1007/BF01935531 Google Scholar
- 18P. Chavant, B. Martinie, T. Meylheuc, M. N. Bellon-Fontaine, and M. Hebraud, Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl. Environ. Microbiol. 2002; 68: 728–737.
- 19L. M. Smoot and M. D. Pierson, Influence of environmental stress on the kinetics and strength of attachment of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel. J. Food Prot. 1988; 61: 1286–1292.
- 20R. T. Briandet, C. Meylheuc, C. Maher, and M. N. Bellon-Fontaine, Listeria monocytogenes Scott A: cell surface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth conditions. Appl. Environ. Microbiol. 1999; 65: 5328–5333.
- 21N. Mozes and P. G. Rouxhet, Methods for measuring hydrophobicity of micro-organisms. J. Microbiol. Methods 1987; 6: 99–112.
- 22A. A. Mafu, D. Roy, J. Goulet, and L. Savoie, Characterization of physicochemical forces involved in adhesion of Listeria monocytogenes to surfaces. Appl. Environ. Microbiol. 1991; 57: 1969–1973.
- 23L. Gorski, J. D. Palumbo, and R. E. Mandrell, Attachment of Listeria monocytogenes to radish tissue is dependent upon temperature and flagellar motility. Appl. Environ. Microbiol. 2003; 69: 258–266.
- 24K. M. Weincek and M. Fletcher, Bacterial adhesion to hydroxyl- and methyl-terminated alkanethiol self-assembled monolayers. J. Bacteriol. 1995; 177: 1959–1966.
- 25X. Qian, S. J. Metallo, I. S. Choi, H. Wu, M. N. Liang, and G. M. Whitesides, Arrays of self-assembled monolayers for studying inhibition of bacterial adhesion. Anal. Chem. 2002; 74: 1805–1810.
- 26K. C. Marshall, Biofilms: an overview of bacterial adhesion, activity, and control at surfaces. ASM News 1992; 58: 202–207.
- 27V. R. Phoenix, R. E. Martinez, K. O. Konhauser, and F. G. Ferris, Characterization and implications of the cell surface reactivity of Calothrix sp. strain KC97. Appl. Environ. Microbiol. 2002; 68: 4827–4834.
- 28T. Castellanos, F. Ascencio, and Y. Bashan, Cell-surface hydrophobicity and cell-surface charge of Azospirillum spp. FEMS Microbiol. Ecol. 1997; 24: 159–172.
- 29H. J. Busscher and H. C. van der Mei, Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv. Dent. Res. 1997; 11: 24–32.
- 30A. H. Weerkamp, H. M. Uyen, and H. J. Busscher, Effect of zeta potential and surface energy on bacterial adhesion to uncoated and saliva-coated human enamel and dentin. J. Dent. Res. 1988; 67: 1483–1487.
- 31M. Fletcher and K. C. Marshall, Bubble contact angle method for evaluation substratum interfacial characteristics and its relevance to bacterial attachment. Appl. Env. Microbiol. 1982; 44: 184–192.
- 32R. Bos, H. C. Van der Mei, and H. J. Busscher, Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol. Rev. 1999; 23: 179–230.
- 33H. Ton-That and O. Schneewind, Assembly of pili on the surface of Corynebacterium diphtheriae. Mol. Microbiol. 2003; 50: 1429–1438.
- 34K. Triandafillu, D. J. Balazs, B. O. Aronsson, P. Descouts, P. Tu Quoc, C. van Delden, H. J. Mathieu, and H. Harms, Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials 2003; 24: 1507–1518.
- 35S. Laarmann and M. A. Schmidt, The Escherichia coli AIDA autotransporter adhesin recognizes an integral membrane glycoprotein as receptor. Microbiology 2003; 149: 1871–1882.
- 36G. E. Soto and S. J. Hultgren, Bacterial adhesins: common themes and variations in architecture and assembly. J. Bacteriol. 1999; 181: 1059–1071.
- 37H. J. Hektor and K. Scholtmeijer, Hydrophobins: proteins with potential. Curr. Opin. Biotechnol., 2005; 16: 434–439.
- 38T. Nakari-Setala, J. Azeredo, M. Henriques, R. Oliveira, J. Teixeira, M. Linder, and M. Penttila, Expression of a fungal hydrophobin in the Saccharomyces cerevisiae cell wall: effect on cell surface properties and immobilization. Appl. Environ. Microbiol. 2002; 68: 3385–3391.
- 39L. Canesi, G. Gallo, M. Gavioli, and C. Pruzzo, Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microsc. Res. Tech. 2002; 57: 469–476.
- 40J. H. Ryu, H. Kim, and L. R. Beuchat, Attachment and biofilm formation by Escherichia coli O157:H7 on stainless steel as influenced by exopolysaccharide production, nutrient availability, and temperature. J. Food Prot. 2004; 67(10): 2123–2131.
- 41E. Cotni, A. Flaibani, M. O’Regan, and I. W. Sutherland, Alginate from Pseudomonas fluorescencs and P. putida: production and properties. Microbiology 1994; 140: 1125–1132.
10.1099/13500872-140-5-1125 Google Scholar
- 42D. G. Davies and G. G. Geesey, Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl. Environ. Microbiol. 1995; 61: 860–867.
- 43J. B. Goldberg, W. L. Gorman, J. L. Flynn, and D. E. Ohman, A mutation in algN permits trans activation of alginate production by algT in Pseudomonas species. J. Bacteriol. 1993; 175: 1303–1308.
- 44P. Vandevivere and D. L. Kirchman, Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl. Environ. Microbiol. 1993; 59: 3280–3286.
- 45A. Boyd and A. M. Chakrabarty, Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 1994; 60: 2355–2359.
- 46E. P. Ivanova, D. K. Pham, J. P. Wright, and D. V. Nicolau, Detection of coccoid forms of Sulfitobacter mediterraneus using atomic force microscopy. FEMS Microbial Lett. 2002; 214: 177–181.
- 47E. P. Ivanova, D. V. Nicolau, N. Yumoto, T. Taguchi, K. Okamoto, and S. Yoshikawa, Impact of the conditions of cultivation and adsorption on antimicrobial activity of marine bacteria. Marine Biol. 1998; 130: 545–551.
- 48M. E. Davey and G. A. O’Toole, Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 2000; 64: 847–867.
- 49K. Sauer and A. K. Camper, Characterization of phenotypic changes in Pseudomonas putida in response to surface associated growth. J. Bacteriol. 2001; 183: 6579–6589.
- 50G. A. O’Toole and R. Kolter, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 1998; 30: 295–304.
- 51G. A. O’Toole and R. Kolter, Initiation of biofilm formation in Pseudomonas fluorescens. Mol. Microbiol. 1998; 28: 449–461.
10.1046/j.1365-2958.1998.00797.x Google Scholar
- 52L. A. Pratt and R. Kolter, Genetic analyses of bacterial biofilm formation. Curr. Opin. Microbiol. 1999; 2: 598–603.
- 53G. O’Toole, H. B. Kaplan, and R. Kolter, Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000; 54: 49–79.