Neurobiology of Anxiety
Miklos Toth
Weill Medical College of Cornell University, New York, New York
Search for more papers by this authorBojana Zupan
Weill Medical College of Cornell University, New York, New York
Search for more papers by this authorMiklos Toth
Weill Medical College of Cornell University, New York, New York
Search for more papers by this authorBojana Zupan
Weill Medical College of Cornell University, New York, New York
Search for more papers by this authorAbstract
Anxiety/fear is a normal reaction to threatening situations and it represents a physiologically protective function. Anxiety/fear is often manifested as avoidance and is also characterized by overt sympathetic reactions. Pathological anxiety is a level of anxiety that is disproportionate to the threat and can be manifested even in the absence of threat. In clinical practice, categorical systems set the boundary at which a particular level of anxiety becomes an anxiety disorder.
Although a genetic contribution to anxiety disorders has long been suspected, it is only recently that genetic polymorphisms in various neurotransmitter and neuromodulatory systems have been linked to anxiety disorders. Still, the contribution of these factors is relatively small to the overall disease phenotype and the complex interaction between genetic factors and the environment will ultimately explain the development of susceptibility to anxiety.
Genetic and biochemical studies, combined with the analysis of mouse strains with induced genetic mutations implicate multiple neurobiological processes in anxiety disorders. Although the association of neurotransmitters and their receptors with anxiety-like behavior is not surprising, cytokines and cell adhesion molecules were also identified as modulators of anxiety. Furthermore, intracellular signaling pathways and their target genes were linked to anxiety allowing the assembly of specific “anxiety” pathways. It is apparent that anxiety-related pathways and processes involve communication between various neurons that, via signaling pathways, eventually converge onto regulation of transcription and/or translation. The proper function of these pathways is especially crucial during early postnatal development and one can hypothesize that abnormalities in these pathways at any level lead to, via altered gene expression, to changes in neuronal morphology and/or function. Importantly, all commonly used anxiolytic drugs can be integrated into this model implying that anxiolytic drugs target and modulate the molecular and cellular pathways which establish and/or control the level of anxiety.
References
- 1 Eysenck, H. J. I. E. (1990). Biological dimensions of personality. In: Handbook of Personality: Theory and Research, L. A. Pervin, Ed. Guilford, New York, pp. 244–276.
- 2 Eysenck, H. J. (1967). The Biological Basis of Personality. Charles C. Thomas, Springfield, IL.
- 3 Costa, P. T. J., and McCrae, R. R. (1992). Normal personality assessment in clinical practice: The NEO Personality Inventory. Psychol. Assess. 4, 5–13.
- 4 Jang, K. L., McCrae, R. R., Angleitner, A., Riemann, R., and Livesley, W. J. (1998). Heritability of facet-level traits in a cross-cultural twin sample: Support for a hierarchical model of personality. J. Pers. Soc. Psychol. 74, 1556–1565.
- 5 American Psychiatric-Association (APA) (1994). Diagnostic and Statistical Manual of Mental Disorders, 4th edn. APA, Washington, DC.
- 6 Sherman, S. L., DeFries, J. C., Gottesman, I. I., Loehlin, J. C., Meyer, J. M., Pelias, M. Z., Rice, J., and Waldman, I. (1997). Behavioral genetics ‘97: ASHG statement. Recent developments in human behavioral genetics: Past accomplishments and future directions. Am. J. Hum. Genet. 60, 1265–1275.
- 7 Fullerton, J., Cubin, M., Tiwari, H., Wang, C., Bomhra, A., Davidson, S., Miller, S., Fairburn, C., Goodwin, G., Neale, M. C., Fiddy, S., Mott, R., Allison, D. B., and Flint, J. (2003). Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative-trait loci that influence variation in the human personality trait neuroticism. Am. J. Hum. Genet. 72, 879–890.
- 8 Neale, B. M., Sullivan, P. F., and Kendler, K. S. (2005). A genome scan of neuroticism in nicotine dependent smokers. Am. J. Med. Genet. B Neuropsychiatr. Genet. 132, 65–69.
- 9 Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., Benjamin, J., Muller, C. R., Hamer, D. H., and Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531.
- 10 Jiang, X., Xu, K., Hoberman, J., Tian, F., Marko, A. J., Waheed, J. F., Harris, C. R., Marini, A. M., Enoch, M. A., and Lipsky, R. H. (2005). BDNF variation and mood disorders: A novel functional promoter polymorphism and Val66Met are associated with anxiety but have opposing effects. Neuropsychopharmacology 30, 1353–1361.
- 11 Lang, U. E., Hellweg, R., Kalus, P., Bajbouj, M., Lenzen, K. P., Sander, T., Kunz, D., and Gallinat, J. (2005). Association of a functional BDNF polymorphism and anxiety-related personality traits. Psychopharmacology (Berl.) 180, 95–99.
- 12 Flint, J., Corley, R., DeFries, J. C., Fulker, D. W., Gray, J. A., Miller, S., and Collins, A. C. (1995). A simple genetic basis for a complex psychological trait in laboratory mice. Science 269, 1432–1435.
- 13 Gershenfeld, H. K., Neumann, P. E., Mathis, C., Crawley, J. N., Li, X., and Paul, S. M. (1997). Mapping quantitative trait loci for open-field behavior in mice. Behav. Genet. 27, 201–210.
- 14 Gershenfeld, H. K., and Paul, S. M. (1997). Mapping quantitative trait loci for fear-like behaviors in mice. Genomics 46, 1–8.
- 15 Henderson, N. D., Turri, M. G., DeFries, J. C., and Flint, J. (2004). QTL analysis of multiple behavioral measures of anxiety in mice. Behav. Genet. 34, 267–293.
- 16 Soldz, S., and Vaillant, G. E. (1999). The Big Five personality traits and the life course: A 45-year longitudinal study. J. Res. Pers. 33, 208–232.
- 17 McAdams, D. P. (1992). The five-factor model in personality: A critical appraisal. J. Pers. 60, 329–361.
- 18 McCrae, R. R., and Costa, P. T., Jr. (1997). Personality trait structure as a human universal. Am. Psychol. 52, 509–516.
- 19 John, O. P. (1990). The “Big Five” factor taxonomy: Dimensions of personality in the natural language and in questionnaires. In: Handbook of Personality: Theory and Research, L. A. Pervin, Ed. Guilford, New York, pp. 66–100.
- 20 Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L., and Hamer, D. H. (1996). Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nat. Genet. 12, 81–84.
- 21 Gray, J. A., and McNaughton, N. (2000). The Neuropsychology of Anxiety. Oxford University Press, Oxford.
- 22 Cloninger, C. R. (1987). A systematic method for clinical description and classification of personality variants. A proposal. Arch. Gen. Psychiatry 44, 573–588.
- 23 Loehlin, J. C., Horn, J. M., and Willerman, L. (1990). Heredity, environment, and personality change: Evidence from the Texas Adoption Project. J. Pers. 58, 221–243.
- 24 Hogg, S. (1996). A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol. Biochem. Behav. 54, 21–30.
- 25 Bourin, M., and Hascoet, M. (2003). The mouse light/dark box test. Eur. J. Pharmacol. 463, 55–65.
- 26 Blanchard, D. C., Griebel, G., and Blanchard, R. J. (2003). The Mouse Defense Test Battery: Pharmacological and behavioral assays for anxiety and panic. Eur. J. Pharmacol. 463, 97–116.
- 27 Belzung, C. (2001). Rodent models of anxiety-like behaviors: Are they predictive for compounds acting via non-benzodiazepine mechanisms? Curr. Opin. Investig. Drugs. 2, 1108–1111.
- 28 Uys, J. D., Stein, D. J., Daniels, W. M., and Harvey, B. H. (2003). Animal models of anxiety disorders. Curr Psychiatry Rep. 5, 274–281.
- 29 Griebel, G. (1995). 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: More than 30 years of research. Pharmacol. Ther. 65, 319–395.
- 30 Rodgers, R. J., Cao, B. J., Dalvi, A., and Holmes, A. (1997). Animal models of anxiety: An ethological perspective. Braz. J. Med. Biol. Res. 30, 289–304.
- 31 Rodgers, R. J. (1997). Animal models of ‘anxiety’: Where next?. Behav. Pharmacol. 8, 477–496; discussion 497–504.
- 32 Weiss, S. M., Lightowler, S., Stanhope, K. J., Kennett, G. A., and Dourish, C. T. (2000). Measurement of anxiety in transgenic mice. Rev. Neurosci. 11, 59–74.
- 33 Lister, R. G. (1987). The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl.) 92, 180–185.
- 34 Treit, D., and Fundytus, M. (1988). Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol. Biochem. Behav. 31, 959–962.
- 35 Crawley, J. N. (1981). Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol. Biochem. Behav. 15, 695–699.
- 36 Rodgers, R. J., Boullier, E., Chatzimichalaki, P., Cooper, G. D., and Shorten, A. (2002). Contrasting phenotypes of C57BL/6JolaHsd. 129S2/SvHsd and 129/SvEv mice in two exploration-based tests of anxiety-related behaviour. Physiol. Behav. 77, 301–310.
- 37 Gross, C., Santarelli, L., Brunner, D., Zhuang, X., and Hen, R. (2000). Altered fear circuits in 5-HT(1A) receptor KO mice. Biol. Psychiatry 48, 1157–1163.
- 38 Bailey, S. J., and Toth, M. (2004). Variability in the benzodiazepine response of serotonin 5-HT1A receptor null mice displaying anxiety-like phenotype: Evidence for genetic modifiers in the 5-HT-mediated regulation of GABA(A) receptors. J. Neurosci. 24, 6343–6351.
- 39 File, S. E. (1985). Animal models for predicting clinical efficacy of anxiolytic drugs: Social behaviour. Neuropsychobiology 13, 55–62.
- 40 Geller, I., Kulak, J. T., Jr., and Seifter, J. (1962). The effects of chlordiazepoxide and chlorpromazine on a punishment discrimination. Psychopharmacologia 3, 374–385.
- 41 Vogel, J. R., Beer, B., and Clody, D. E. (1971). A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia 21, 1–7.
- 42 Davis, M. (1990). Animal models of anxiety based on classical conditioning: The conditioned emotional response (CER) and the fear-potentiated startle effect. Pharmacol. Ther. 47, 147–165.
- 43 Bienvenu, O. J., Samuels, J. F., Costa, P. T., Reti, I. M., Eaton, W. W., and Nestadt, G. (2004). Anxiety and depressive disorders and the five-factor model of personality: A higher- and lower-order personality trait investigation in a community sample. Depress. Anxiety 20, 92–97.
- 44 Friedman, B. H., and Thayer, J. F. (1998). Autonomic balance revisited: Panic anxiety and heart rate variability. J. Psychosom. Res. 44, 133–151.
- 45 Jacob, C. P., Strobel, A., Hohenberger, K., Ringel, T., Gutknecht, L., Reif, A., Brocke, B., and Lesch, K. P. (2004). Association between allelic variation of serotonin transporter function and neuroticism in anxious cluster C personality disorders. Am. J. Psychiatry 161, 569–572.
- 46 Sen, S., Burmeister, M., and Ghosh, D. (2004). Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. Am. J. Med. Genet. B Neuropsychiatr. Genet. 127, 85–89.
- 47 Organization, W. H. (1992). The ICD-10 Classification of Mental and Behavioral Disorders—Clinical Description and Diagnostic Guidelines. World Health Organization, Geneva.
- 48 Slade, T., and Andrews, G. (2001). DSM-IV and ICD-10 generalized anxiety disorder: Discrepant diagnoses and associated disability. Soc. Psychiatry Psychiatr. Epidemiol. 36, 45–51.
- 49 Andrews, G., and Slade, T. (2002). The classification of anxiety disorders in ICD-10 and DSM-IV: A concordance analysis. Psychopathology 35, 100–106.
- 50 Noyes, R.H.-S.R. (2004). The Anxiety Disorders. Cambridge University Press, Cambridge.
- 51 Avgustinovich, D. F., Lipina, T. V., Bondar, N. P., Alekseyenko, O. V., and Kudryavtseva, N. N. (2000). Features of the genetically defined anxiety in mice. Behav Genet. 30, 101–109.
- 52 Trullas, R., and Skolnick, P. (1993). Differences in fear motivated behaviors among inbred mouse strains. Psychopharmacology (Berl.) 111, 323–331.
- 53 van Gaalen, M. M., and Steckler, T. (2000). Behavioural analysis of four mouse strains in an anxiety test battery. Behav. Brain Res. 115, 95–106.
- 54 Berrettini, W. H., Harris, N., Ferraro, T. N., and Vogel, W. H. (1994). Maudsley reactive and non-reactive rats differ in exploratory behavior but not in learning. Psychiatr. Genet. 4, 91–94.
- 55 Liebsch, G., Linthorst, A. C., Neumann, I. D., Reul, J. M., Holsboer, F., and Landgraf, R. (1998). Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high- and low-anxiety-related behavior. Neuropsychopharmacology 19, 381–396.
- 56 Domino, E. F., French, J., Pohorecki, R., Galus, C. F., and Pandit, S. K. (1989). Further observations on the effects of subhypnotic doses of midazolam in normal volunteers. Psychopharmacol. Bull. 25, 460–465.
- 57 Gupta, A., Lind, S., Eklund, A., and Lennmarken, C. (1997). The effects of midazolam and flumazenil on psychomotor function. J. Clin. Anesth. 9, 21–25.
- 58 Glue, P., Wilson, S., Coupland, N., Ball, D., and Nutt, D. (1995). The relationship between benzodiazepine receptor sensitivity and neuroticism. Anxiety Disord. 9, 33–45.
- 59 Glue, P., and Nutt, D. J. (1991). Benzodiazepine receptor sensitivity in panic disorder. Lancet 337, 563.
- 60 Roy-Byrne, P. P., Cowley, D. S., Greenblatt, D. J., Shader, R. I., and Hommer, D. (1990). Reduced benzodiazepine sensitivity in panic disorder. Arch. Gen. Psychiatry 47, 534–538.
- 61 Roy-Byrne, P., Wingerson, D. K., Radant, A., Greenblatt, D. J., and Cowley, D. S. (1996). Reduced benzodiazepine sensitivity in patients with panic disorder: Comparison with patients with obsessive-compulsive disorder and normal subjects. Am. J. Psychiatry 153, 1444–1449.
- 62 Cowley, D. S., Ha, E. H., and Roy-Byrne, P. P. (1997). Determinants of pharmacologic treatment failure in panic disorder. J. Clin. Psychiatry 58, 555–561; quiz 562–563.
- 63 Pratt, J. A. (1992). The neuroanatomical basis of anxiety. Pharmacol. Ther. 55, 149–181.
- 64 Davis, M. (1992). The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353–375.
- 65 LeDoux, J. E., Iwata, J., Cicchetti, P., and Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529.
- 66 LeDoux, J. E., Cicchetti, P., Xagoraris, A., and Romanski, L. M. (1990). The lateral amygdaloid nucleus: Sensory interface of the amygdala in fear conditioning. J. Neurosci. 10, 1062–1069.
- 67 Liberzon, I., Taylor, S. F., Amdur, R., Jung, T. D., Chamberlain, K. R., Minoshima, S., Koeppe, R. A., and Fig, L. M. (1999). Brain activation in PTSD in response to trauma-related stimuli. Biol. Psychiatry 45, 817–826.
- 68 Nutt, D. J., and Malizia, A. L. (2004). Structural and functional brain changes in posttraumatic stress disorder. J. Clin. Psychiatry 65 (Suppl. 1), 11–17.
- 69 Dilger, S., Straube, T., Mentzel, H. J., Fitzek, C., Reichenbach, J. R., Hecht, H., Krieschel, S., Gutberlet, I., and Miltner, W. H. (2003). Brain activation to phobia-related pictures in spider phobic humans: An event-related functional magnetic resonance imaging study. Neurosci. Lett. 348, 29–32.
- 70 Massana, G., Serra-Grabulosa, J. M., Salgado-Pineda, P., Gasto, C., Junque, C., Massana, J., Mercader, J. M., Gomez, B., Tobena, A., and Salamero, M. (2003). Amygdalar atrophy in panic disorder patients detected by volumetric magnetic resonance imaging. Neuroimage 19, 80–90.
- 71 Szeszko, P. R., Robinson, D., Alvir, J. M., Bilder, R. M., Lencz, T., Ashtari, M., Wu, H., and Bogerts, B. (1999). Orbital frontal and amygdala volume reductions in obsessive-compulsive disorder. Arch. Gen. Psychiatry 56, 913–919.
- 72 De Bellis, M. D., Casey, B. J., Dahl, R. E., Birmaher, B., Williamson, D. E., Thomas, K. M., Axelson, D. A., Frustaci, K., Boring, A. M., Hall, J., and Ryan, N. D. (2000). A pilot study of amygdala volumes in pediatric generalized anxiety disorder. Biol. Psychiatry 48, 51–57.
- 73 Thomas, K. M., Drevets, W. C., Dahl, R. E., Ryan, N. D., Birmaher, B., Eccard, C. H., Axelson, D., Whalen, P. J., and Casey, B. J. (2001). Amygdala response to fearful faces in anxious and depressed children. Arch. Gen. Psychiatry 58, 1057–1063.
- 74 Bystritsky, A., Pontillo, D., Powers, M., Sabb, F. W., Craske, M. G., and Bookheimer, S. Y. (2001). Functional MRI changes during panic anticipation and imagery exposure. Neuroreport 12, 3953–3957.
- 75 Lanius, R. A., Williamson, P. C., Hopper, J., Densmore, M., Boksman, K., Gupta, M. A., Neufeld, R. W., Gati, J. S., and Menon, R. S. (2003). Recall of emotional states in posttraumatic stress disorder: An fMRI investigation. Biol. Psychiatry 53, 204–210.
- 76 Shin, L. M., Whalen, P. J., Pitman, R. K., Bush, G., Macklin, M. L., Lasko, N. B., Orr, S. P., McInerney, S. C., and Rauch, S. L. (2001). An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol. Psychiatry 50, 932–942.
- 77 Bremner, J. D., Staib, L. H., Kaloupek, D., Southwick, S. M., Soufer, R., and Charney, D. S. (1999). Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: A positron emission tomography study. Biol. Psychiatry 45, 806–816.
- 78 Rauch, S. L., Whalen, P. J., Shin, L. M., McInerney, S. C., Macklin, M. L., Lasko, N. B., Orr, S. P., and Pitman, R. K. (2000). Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: A functional MRI study. Biol. Psychiatry 47, 769–776.
- 79 De Bellis, M. D., Hall, J., Boring, A. M., Frustaci, K., and Moritz, G. (2001). A pilot longitudinal study of hippocampal volumes in pediatric maltreatment-related posttraumatic stress disorder. Biol. Psychiatry 50, 305–309.
- 80 Bonne, O., Brandes, D., Gilboa, A., Gomori, J. M., Shenton, M. E., Pitman, R. K., and Shalev, A. Y. (2001). Longitudinal MRI study of hippocampal volume in trauma survivors with PTSD. Am. J. Psychiatry 158, 1248–1251.
- 81 Gilbertson, M. W., Shenton, M. E., Ciszewski, A., Kasai, K., Lasko, N. B., Orr, S. P., and Pitman, R. K. (2002). Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci. 5, 1242–1247.
- 82 Lindauer, R. J., Vlieger, E. J., Jalink, M., Olff, M., Carlier, I. V., Majoie, C. B., den Heeten, G. J., and Gersons, B. P. (2004). Smaller hippocampal volume in Dutch police officers with posttraumatic stress disorder. Biol. Psychiatry 56, 356–363.
- 83 Wignall, E. L., Dickson, J. M., Vaughan, P., Farrow, T. F., Wilkinson, I. D., Hunter, M. D., and Woodruff, P. W. (2004). Smaller hippocampal volume in patients with recent-onset posttraumatic stress disorder. Biol. Psychiatry 56, 832–836.
- 84 Villarreal, G., and King, C. Y. (2001). Brain imaging in posttraumatic stress disorder. Semin. Clin. Neuropsychiatry 6, 131–145.
- 85 Pujol, J., Soriano-Mas, C., Alonso, P., Cardoner, N., Menchon, J. M., Deus, J., and Vallejo, J. (2004). Mapping structural brain alterations in obsessive-compulsive disorder. Arch. Gen. Psychiatry 61, 720–730.
- 86
Saxena, S.,
Brody, A. L.,
Schwartz, J. M., and
Baxter, L. R.
(1998).
Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder.
Br. J. Psychiatry Suppl., 35,
26–37.
10.1192/S0007125000297870 Google Scholar
- 87 LeDoux, J. E. (2000). Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184.
- 88 Cahill, L., and McGaugh, J. L. (1998). Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci. 21, 294–299.
- 89 Davis, M., Rainnie, D., and Cassell, M. (1994). Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci. 17, 208–214.
- 90 Bannerman, D. M., Grubb, M., Deacon, R. M., Yee, B. K., Feldon, J., and Rawlins, J. N. (2003). Ventral hippocampal lesions affect anxiety but not spatial learning. Behav. Brain Res. 139, 197–213.
- 91 Kjelstrup, K. G., Tuvnes, F. A., Steffenach, H. A., Murison, R., Moser, E. I., and Moser, M. B. (2002). Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci USA 99, 10825–10830.
- 92 Degroot, A., and Treit, D. (2004). Anxiety is functionally segregated within the septohippocampal system. Brain Res. 1001, 60–71.
- 93 File, S. E., Kenny, P. J., and Cheeta, S. (2000). The role of the dorsal hippocampal serotonergic and cholinergic systems in the modulation of anxiety. Pharmacol. Biochem. Behav. 66, 65–72.
- 94 Malleret, G., Hen, R., Guillou, J. L., Segu, L., and Buhot, M. C. (1999). 5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze. J. Neurosci. 19, 6157–6168.
- 95 Shah, A. A., and Treit, D. (2004). Infusions of midazolam into the medial prefrontal cortex produce anxiolytic effects in the elevated plus-maze and shock-probe burying tests. Brain Res. 996, 31–40.
- 96 Shah, A. A., and Treit, D. (2003). Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests. Brain Res. 969, 183–194.
- 97 Sullivan, R. M., and Gratton, A. (2002). Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Brain Res. 927, 69–79.
- 98 Gonzalez, L. E., Rujano, M., Tucci, S., Paredes, D., Silva, E., Alba, G., and Hernandez, L. (2000). Medial prefrontal transection enhances social interaction I: Behavioral studies. Brain Res. 887, 7–15.
- 99 Sullivan, G. M., Coplan, J. D., Kent, J. M., and Gorman, J. M. (1999). The noradrenergic system in pathological anxiety: A focus on panic with relevance to generalized anxiety and phobias. Biol. Psychiatry 46, 1205–1218.
- 100 Graeff, F. G., Viana, M. B., and Mora, P. O. (1997). Dual role of 5-HT in defense and anxiety. Neurosci. Biobehav. Rev. 21, 791–799.
- 101 Schlegel, S., Steinert, H., Bockisch, A., Hahn, K., Schloesser, R., and Benkert, O. (1994). Decreased benzodiazepine receptor binding in panic disorder measured by IOMAZENIL-SPECT. A preliminary report. Eur. Arch. Psychiatry Clin. Neurosci. 244, 49–51.
- 102 Kaschka, W., Feistel, H., and Ebert, D. (1995). Reduced benzodiazepine receptor binding in panic disorders measured by iomazenil SPECT. J. Psychiatr. Res. 29, 427–434.
- 103 Tiihonen, J., Kuikka, J., Rasanen, P., Lepola, U., Koponen, H., Liuska, A., Lehmusvaara, A., Vainio, P., Kononen, M., Bergstrom, K., Yu, M., Kinnunen, I., Akerman, K., and Karhu, J. (1997). Cerebral benzodiazepine receptor binding and distribution in generalized anxiety disorder: A fractal analysis. Mol. Psychiatry 2, 463–471.
- 104 Nutt, D. J., Glue, P., Lawson, C., and Wilson, S. (1990). Flumazenil provocation of panic attacks. Evidence for altered benzodiazepine receptor sensitivity in panic disorder. Arch. Gen. Psychiatry 47, 917–925.
- 105 Sieghart, W. (2000). Unraveling the function of GABA(A) receptor subtypes. Trends Pharmacol. Sci. 21, 411–413.
- 106 Rudolph, U., Crestani, F., and Mohler, H. (2001). GABA(A) receptor subtypes: Dissecting their pharmacological functions. Trends Pharmacol. Sci. 22, 188–194.
- 107 Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M., and Luscher, B. (1998). Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat. Neurosci. 1, 563–571.
- 108 Smith, S. S., Gong, Q. H., Hsu, F. C., Markowitz, R. S., Ffrench-Mullen, J. M., and Li, X. (1998). GABA(A) receptor alpha4 subunit suppression prevents withdrawal properties of an endogenous steroid. Nature 392, 926–930.
- 109 Dalvi, A., and Rodgers, R. J. (1996). GABAergic influences on plus-maze behaviour in mice. Psychopharmacology (Berl.) 128, 380–397.
- 110 Belzung, C., Misslin, R., Vogel, E., Dodd, R. H., and Chapouthier, G. (1987). Anxiogenic effects of methyl-beta-carboline-3-carboxylate in a light/dark choice situation. Pharmacol. Biochem. Behav. 28, 29–33.
- 111 Sanders, S. K., and Shekhar, A. (1995). Regulation of anxiety by GABAA receptors in the rat amygdala. Pharmacol. Biochem. Behav. 52, 701–706.
- 112 Rowlett, J. K., Platt, D. M., Lelas, S., Atack, J. R., and Dawson, G. R. (2005). Different GABAA receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. Proc. Natl. Acad. Sci. USA 102, 915–920.
- 113 Johnston, A. L., and File, S. E. (1986). 5-HT and anxiety: Promises and pitfalls. Pharmacol. Biochem. Behav. 24, 1467–1470.
- 114 Inoue, T., Izumi, T., Li, X. B., Huang, J. Z., Kitaichi, Y., Nakagawa, S., and Koyama, T. (2004). Biological basis of anxiety disorders and serotonergic anxiolytics. Nihon Shinkei Seishin Yakurigaku Zasshi 24, 125–131 (in Japanese).
- 115 Blier, P., Pineyro, G., el Mansari, M., Bergeron, R., and de Montigny, C. (1998). Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann. NY Acad. Sci. 861, 204–216.
- 116 Goldberg, M. E., Salama, A. I., Patel, J. B., and Malick, J. B. (1983). Novel non-benzodiazepine anxiolytics. Neuropharmacology 22, 1499–1504.
- 117
Bremner, J. D.,
Krystal, J. H.,
Southwick, S. M., and
Charney, D. S.
(1996).
Noradrenergic mechanisms in stress and anxiety: II. Clinical studies.
Synapse
23,
39–51.
10.1002/(SICI)1098-2396(199605)23:1<39::AID-SYN5>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 118
Bremner, J. D.,
Krystal, J. H.,
Southwick, S. M., and
Charney, D. S.
(1996).
Noradrenergic mechanisms in stress and anxiety: I. Preclinical studies.
Synapse
23,
28–38.
10.1002/(SICI)1098-2396(199605)23:1<28::AID-SYN4>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 119 Taylor, D. P., Riblet, L. A., Stanton, H. C., Eison, A. S., Eison, M. S., and Temple, D. L. Jr. (1982). Dopamine and antianxiety activity. Pharmacol. Biochem. Behav. 17 (Suppl. 1), 25–35.
- 120 Navarro, J. F., Luna, G., Garcia, F., and Pedraza, C. (2003). Effects of L-741,741, a selective dopamine receptor antagonist, on anxiety tested in the elevated plus-maze in mice. Methods Find. Exp. Clin. Pharmacol. 25, 45–47.
- 121 Millan, M. J., Brocco, M., Papp, M., Serres, F., La Rochelle, C. D., Sharp, T., Peglion, J. L., and Dekeyne, A. (2004). S32504, a novel naphtoxazine agonist at dopamine D3/D2 receptors: III. Actions in models of potential antidepressive and anxiolytic activity in comparison with ropinirole. J. Pharmacol. Exp. Ther. 309, 936–950.
- 122 Griebel, G. (1999). Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders? Pharmacol. Ther. 82, 1–61.
- 123 Steckler, T., and Holsboer, F. (1999). Corticotropin-releasing hormone receptor subtypes and emotion. Biol. Psychiatry. 46, 1480–1508.
- 124 von Bardeleben, U., and Holsboer, F. (1988). Human corticotropin releasing hormone: Clinical studies in patients with affective disorders, alcoholism, panic disorder and in normal controls. Prog. Neuropsychopharmacol. Biol. Psychiatry 12 (Suppl.), S165–S187.
- 125 Arborelius, L., Owens, M. J., Plotsky, P. M., and Nemeroff, C. B. (1999). The role of corticotropin-releasing factor in depression and anxiety disorders. J. Endocrinol. 160, 1–12.
- 126 McEwen, B. S. (2004). Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann. NY Acad. Sci. 1032, 1–7.
- 127 de Kloet, E. R., Oitzl, M. S., and Joels, M. (1993). Functional implications of brain corticosteroid receptor diversity. Cell. Mol. Neurobiol. 13, 433–455.
- 128 Strohle, A., and Holsboer, F. (2003). Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry 36 (Suppl. 3), S207–S214.
- 129 McEwen, B. S. (2000). The neurobiology of stress: From serendipity to clinical relevance. Brain Res. 886, 172–189.
- 130 Koob, G. F., and Heinrichs, S. C. (1999). A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res. 848, 141–152.
- 131 Sherman, J. E., and Kalin, N. H. (1987). The effects of ICV-CRH on novelty-induced behavior. Pharmacol. Biochem. Behav. 26, 699–703.
- 132 Sutton, R. E., Koob, G. F., Le Moal, M., Rivier, J., and Vale, W. (1982). Corticotropin releasing factor produces behavioural activation in rats. Nature 297, 331–333.
- 133 Berridge, C. W., and Dunn, A. J. (1989). Restraint-stress-induced changes in exploratory behavior appear to be mediated by norepinephrine-stimulated release of CRF. J. Neurosci. 9, 3513–3521.
- 134 Butler, P. D., Weiss, J. M., Stout, J. C., and Nemeroff, C. B. (1990). Corticotropin-releasing factor produces fear-enhancing and behavioral activating effects following infusion into the locus coeruleus. J. Neurosci. 10, 176–183.
- 135 Carrasco, G. A., and Van de Kar, L. D. (2003). Neuroendocrine pharmacology of stress. Eur. J. Pharmacol. 463, 235–272.
- 136 De Kloet, E. R., Sutanto, W., Rots, N., van Haarst, A., van den Berg, D., Oitzl, M., van Eekelen, A., and Voorhuis, D. (1991). Plasticity and function of brain corticosteroid receptors during aging. Acta Endocrinol. (Copenh.) 125 (Suppl. 1), 65–72.
- 137 Diorio, D., Viau, V., and Meaney, M. J. (1993). The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J. Neurosci. 13, 3839–3847.
- 138 Heilig, M., and Widerlov, E. (1990). Neuropeptide Y: An overview of central distribution, functional aspects, and possible involvement in neuropsychiatric illnesses. Acta Psychiatr. Scand. 82, 95–114.
- 139 Heilig, M., Soderpalm, B., Engel, J. A., and Widerlov, E. (1989). Centrally administered neuropeptide Y (NPY) produces anxiolytic-like effects in animal anxiety models. Psychopharmacology (Berl.) 98, 524–529.
- 140 Wahlestedt, C., Pich, E. M., Koob, G. F., Yee, F., and Heilig, M. (1993). Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science 259, 528–531.
- 141 Harro, J., Vasar, E., and Bradwejn, J. (1993). CCK in animal and human research on anxiety. Trends Pharmacol. Sci. 14, 244–249.
- 142 Mosconi, M., Chiamulera, C., and Recchia, G. (1993). New anxiolytics in development. Int. J. Clin. Pharmacol. Res. 13, 331–344.
- 143 Abelson, J. L. (1995). Cholecystokinin in psychiatric research: A time for cautious excitement. J. Psychiatr. Res. 29, 389–396.
- 144 Herranz, R. (2003). Cholecystokinin antagonists: Pharmacological and therapeutic potential. Med. Res. Rev. 23, 559–605.
- 145 Saria, A. (1999). The tachykinin NK1 receptor in the brain: Pharmacology and putative functions. Eur. J. Pharmacol. 375, 51–60.
- 146 Brodin, E., Rosen, A., Schott, E., and Brodin, K. (1994). Effects of sequential removal of rats from a group cage, and of individual housing of rats, on substance P, cholecystokinin and somatostatin levels in the periaqueductal grey and limbic regions. Neuropeptides 26, 253–260.
- 147 Otsuka, M., and Yoshioka, K. (1993). Neurotransmitter functions of mammalian tachykinins. Physiol. Rev. 73, 229–308.
- 148 Nikolaus, S., Huston, J. P., and Hasenohrl, R. U. (1999). The neurokinin-1 receptor antagonist WIN51,708 attenuates the anxiolytic-like effects of ventralpallidal substance P injection. Neuroreport 10, 2293–2296.
- 149 Anisman, H., Merali, Z., Poulter, M. O., and Hayley, S. (2005). Cytokines as a precipitant of depressive illness: Animal and human studies. Curr. Pharm. Des. 11, 963–972.
- 150 Lesch, K. P. (2001). Molecular foundation of anxiety disorders. J. Neural. Transm. 108, 717–746.
- 151 Finn, D. A., Rutledge-Gorman, M. T., and Crabbe, J. C. (2003). Genetic animal models of anxiety. Neurogenetics 4, 109–135.
- 152 Jetty, P. V., Charney, D. S., and Goddard, A. W. (2001). Neurobiology of generalized anxiety disorder. Psychiatr. Clin. North Am. 24, 75–97.
- 153 Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., Egan, M. F., and Weinberger, D. R. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science 297, 400–403.
- 154 Munafo, M. R., Clark, T., and Flint, J., (2004). Does measurement instrument moderate the association between the serotonin transporter gene and anxiety-related personality traits? A meta-analysis. Mol. Psychiatry 10, 415–419.
- 155 Ansorge, M. S., Zhou, M., Lira, A., Hen, R., and Gingrich, J. A. (2004). Early life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306, 879–881.
- 156 Neumeister, A., Bain, E., Nugent, A. C., Carson, R. E., Bonne, O., Luckenbaugh, D. A., Eckelman, W., Herscovitch, P., Charney, D. S., and Drevets, W. C. (2004). Reduced serotonin type 1A receptor binding in panic disorder. J. Neurosci. 24, 589–591.
- 157 Mann, J. J. (1999). Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 21, 99S–105S.
- 158 Lopez, J. F., Chalmers, D. T., Little, K. Y., and Watson, S. J. (1998). A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: Implications for the neurobiology of depression. Biol. Psychiatry 43, 547–573.
- 159 Lemonde, S., Turecki, G., Bakish, D., Du, L., Hrdina, P. D., Bown, C. D., Sequeira, A., Kushwaha, N., Morris, S. J., Basak, A., Ou, X. M., and Albert, P. R. (2003). Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J. Neurosci. 23, 8788–8799.
- 160 Lesch, K. P., Aulakh, C. S., Wolozin, B. L., and Murphy, D. L. (1992). Serotonin (5-HT) receptor, 5-HT transporter and G protein-effector expression: Implications for depression. Pharmacol. Toxicol. 71 (Suppl. 1), 49–60.
- 161 Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A., Weder, A. B., and Burmeister, M. (2003). A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology 28, 397–401.
- 162 Lang, U. E., Hellweg, R., and Gallinat, J. (2004). BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits. Neuropsychopharmacology 29, 795–798.
- 163 Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B., and Weinberger, D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269.
- 164 Kash, S. F., Tecott, L. H., Hodge, C., and Baekkeskov, S. (1999). Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. USA 96, 1698–1703.
- 165 Asada, H., Kawamura, Y., Maruyama, K., Kume, H., Ding, R., Ji, F. Y., Kanbara, N., Kuzume, H., Sanbo, M., Yagi, T., and Obata, K. (1996). Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem. Biophys. Res. Commun. 229, 891–895.
- 166 Asada, H., Kawamura, Y., Maruyama, K., Kume, H., Ding, R. G., Kanbara, N., Kuzume, H., Sanbo, M., Yagi, T., and Obata, K. (1997). Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. USA 94, 6496–6499.
- 167 Sherif, F., Harro, J., el-Hwuegi, A., and Oreland, L. (1994). Anxiolytic-like effect of the GABA-transaminase inhibitor vigabatrin (gamma-vinyl GABA) on rat exploratory activity. Pharmacol. Biochem. Behav. 49, 801–805.
- 168 Gogos, J. A., Morgan, M., Luine, V., Santha, M., Ogawa, S., Pfaff, D., and Karayiorgou, M. (1998). Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc. Natl. Acad. Sci. USA 95, 9991–9996.
- 169 Xu, F., Gainetdinov, R. R., Wetsel, W. C., Jones, S. R., Bohn, L. M., Miller, G. W., Wang, Y. M., and Caron, M. G. (2000). Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci. 3, 465–471.
- 170 Bengel, D., Murphy, D. L., Andrews, A. M., Wichems, C. H., Feltner, D., Heils, A., Mossner, R., Westphal, H., and Lesch, K. P. (1998). Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Mol. Pharmacol. 53, 649–655.
- 171 Murphy, D. L., Li, Q., Engel, S., Wichems, C., Andrews, A., Lesch, K. P., and Uhl, G. (2001). Genetic perspectives on the serotonin transporter. Brain Res. Bull. 56, 487–494.
- 172 Lira, A., Zhou, M., Castanon, N., Ansorge, M. S., Gordon, J. A., Francis, J. H., Bradley-Moore, M., Lira, J., Underwood, M. D., Arango, V., Kung, H. F., Hofer, M. A., Hen, R., and Gingrich, J. A. (2003). Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol. Psychiatry 54, 960–971.
- 173 Stenzel-Poore, M. P., Heinrichs, S. C., Rivest, S., Koob, G. F., and Vale, W. W. (1994). Overproduction of corticotropin-releasing factor in transgenic mice: A genetic model of anxiogenic behavior. J. Neurosci. 14, 2579–2584.
- 174 Stenzel-Poore, M. P., Duncan, J. E., Rittenberg, M. B., Bakke, A. C., and Heinrichs, S. C. (1996). CRH overproduction in transgenic mice: Behavioral and immune system modulation. Ann. NY Acad. Sci. 780, 36–48.
- 175 Dunn, A. J., and Swiergiel, A. H. (1999). Behavioral responses to stress are intact in CRF-deficient mice. Brain Res. 845, 14–20.
- 176 Muglia, L., Jacobson, L., and Majzoub, J. A. (1996). Production of corticotropin-releasing hormone-deficient mice by targeted mutation in embryonic stem cells. Ann. NY Acad. Sci. 780, 49–59.
- 177 Weninger, S. C., Dunn, A. J., Muglia, L. J., Dikkes, P., Miczek, K. A., Swiergiel, A. H., Berridge, C. W., and Majzoub, J. A. (1999). Stress-induced behaviors require the corticotropin-releasing hormone (CRH) receptor, but not CRH. Proc. Natl. Acad. Sci. USA 96, 8283–8288.
- 178 Vetter, D. E., Li, C., Zhao, L., Contarino, A., Liberman, M. C., Smith, G. W., Marchuk, Y., Koob, G. F., Heinemann, S. F., Vale, W., and Lee, K. F. (2002). Urocortin-deficient mice show hearing impairment and increased anxiety-like behavior. Nat. Genet. 31, 363–369.
- 179 Karolyi, I. J., Burrows, H. L., Ramesh, T. M., Nakajima, M., Lesh, J. S., Seong, E., Camper, S. A., and Seasholtz, A. F. (1999). Altered anxiety and weight gain in corticotropin-releasing hormone-binding protein-deficient mice. Proc. Natl. Acad. Sci. USA 96, 11595–11600.
- 180 Burrows, H. L., Nakajima, M., Lesh, J. S., Goosens, K. A., Samuelson, L. C., Inui, A., Camper, S. A., and Seasholtz, A. F. (1998). Excess corticotropin releasing hormone-binding protein in the hypothalamic-pituitary-adrenal axis in transgenic mice. J. Clin. Invest. 101, 1439–1447.
- 181 Bannon, A. W., Seda, J., Carmouche, M., Francis, J. M., Norman, M. H., Karbon, B., and McCaleb, M. L. (2000). Behavioral characterization of neuropeptide Y knockout mice. Brain Res. 868, 79–87.
- 182 Konig, M., Zimmer, A. M., Steiner, H., Holmes, P. V., Crawley, J. N., Brownstein, M. J., and Zimmer, A. (1996). Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383, 535–538.
- 183 Good, A. J., and Westbrook, R. F. (1995). Effects of a microinjection of morphine into the amygdala on the acquisition and expression of conditioned fear and hypoalgesia in rats. Behav. Neurosci. 109, 631–641.
- 184 Koster, A., Montkowski, A., Schulz, S., Stube, E. M., Knaudt, K., Jenck, F., Moreau, J. L., Nothacker, H. P., Civelli, O., and Reinscheid, R. K. (1999). Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc. Natl. Acad. Sci. USA 96, 10444–10449.
- 185 Reinscheid, R. K., and Civelli, O. (2002). The orphanin FQ/nociceptin knockout mouse: A behavioral model for stress responses. Neuropeptides 36, 72–76.
- 186 Poo, M. M. (2001). Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32.
- 187 Lessmann, V., Gottmann, K., and Malcangio, M. (2003). Neurotrophin secretion: Current facts and future prospects. Prog. Neurobiol. 69, 341–374.
- 188 Jones, K. R., Farinas, I., Backus, C., and Reichardt, L. F. (1994). Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76, 989–999.
- 189 MacQueen, G. M., Ramakrishnan, K., Croll, S. D., Siuciak, J. A., Yu, G., Young, L. T., and Fahnestock, M. (2001). Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav. Neurosci. 115, 1145–1153.
- 190 Rios, M., Fan, G., Fekete, C., Kelly, J., Bates, B., Kuehn, R., Lechan, R. M., and Jaenisch, R. (2001). Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol. Endocrinol. 15, 1748–1757.
- 190a Chen, Z. Y., Jing, D., Bath, K. G., Ieraci, A., Khan, T., Siao, C. J., Herrera, D. G., Toth, M., Yang, C., McEwen, B. S., Hempstead, B. L. and Lee, F. S. (2006) Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior, Science 314, 140–143.
- 192 Connor, T. J., Song, C., Leonard, B. E., Merali, Z., and Anisman, H. (1998). An assessment of the effects of central interleukin-1beta, -2, -6, and tumor necrosis factor-alpha administration on some behavioural, neurochemical, endocrine and immune parameters in the rat. Neuroscience 84, 923–933.
- 193 Fiore, M., Alleva, E., Probert, L., Kollias, G., Angelucci, F., and Aloe, L. (1998). Exploratory and displacement behavior in transgenic mice expressing high levels of brain TNF-alpha. Physiol. Behav. 63, 571–576.
- 194 Golan, H., Levav, T., Mendelsohn, A., and Huleihel, M. (2004). Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb. Cortex. 14, 97–105.
- 195 Yamada, K., Iida, R., Miyamoto, Y., Saito, K., Sekikawa, K., Seishima, M., and Nabeshima, T. (2000). Neurobehavioral alterations in mice with a targeted deletion of the tumor necrosis factor-alpha gene: Implications for emotional behavior. J. Neuroimmunol. 111, 131–138.
- 196 Kustova, Y., Sei, Y., Morse, H. C. Jr., and Basile, A. S. (1998). The influence of a targeted deletion of the IFNgamma gene on emotional behaviors. Brain Behav. Immun. 12, 308–324.
- 197 Crestani, F., Lorez, M., Baer, K., Essrich, C., Benke, D., Laurent, J. P., Belzung, C., Fritschy, J. M., Luscher, B., and Mohler, H. (1999). Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat. Neurosci. 2, 833–839.
- 198 Wick, M. J., Radcliffe, R. A., Bowers, B. J., Mascia, M. P., Luscher, B., Harris, R. A., and Wehner, J. M. (2000). Behavioural changes produced by transgenic overexpression of gamma2L and gamma2S subunits of the GABAA receptor. Eur. J. Neurosci. 12, 2634–2638.
- 199 McKernan, R. M., and Whiting, P. J. (1996). Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci. 19, 139–143.
- 200 Kralic, J. E., O'Buckley, T. K., Khisti, R. T., Hodge, C. W., Homanics, G. E., and Morrow, A. L. (2002). GABA(A) receptor alpha-1 subunit deletion alters receptor subtype assembly, pharmacological and behavioral responses to benzodiazepines and zolpidem. Neuropharmacology 43, 685–694.
- 201 Sur, C., Wafford, K. A., Reynolds, D. S., Hadingham, K. L., Bromidge, F., Macaulay, A., Collinson, N., O'Meara, G., Howell, O., Newman, R., Myers, J., Atack, J. R., Dawson, G. R., McKernan, R. M., Whiting, P. J., and Rosahl, T. W. (2001). Loss of the major GABA(A) receptor subtype in the brain is not lethal in mice. J. Neurosci. 21, 3409–3418.
- 202 Vicini, S., Ferguson, C., Prybylowski, K., Kralic, J., Morrow, A. L., and Homanics, G. E. (2001). GABA(A) receptor alpha1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J. Neurosci. 21, 3009–3016.
- 203 Low, K., Crestani, F., Keist, R., Benke, D., Brunig, I., Benson, J. A., Fritschy, J. M., Rulicke, T., Bluethmann, H., Mohler, H., and Rudolph, U. (2000). Molecular and neuronal substrate for the selective attenuation of anxiety. Science. 290, 131–134.
- 204 Reynolds, D. S., McKernan, R. M., and Dawson, G. R. (2001). Anxiolytic-like action of diazepam: Which GABA(A) receptor subtype is involved? Trends Pharmacol. Sci. 22, 402–403.
- 205 Boehm, S. L. II, Ponomarev, I., Jennings, A. W., Whiting, P. J., Rosahl, T. W., Garrett, E. M., Blednov, Y. A., and Harris, R. A. (2004). Gamma-aminobutyric acid A receptor subunit mutant mice: New perspectives on alcohol actions. Biochem. Pharmacol. 68, 1581–1602.
- 206 Collinson, N., Kuenzi, F. M., Jarolimek, W., Maubach, K. A., Cothliff, R., Sur, C., Smith, A., Otu, F. M., Howell, O., Atack, J. R., McKernan, R. M., Seabrook, G. R., Dawson, G. R., Whiting, P. J., and Rosahl, T. W. (2002). Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. J. Neurosci. 22, 5572–5580.
- 207 Rodgers, R. J., and Johnson, N. J. (1995). Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety. Pharmacol. Biochem. Behav. 52, 297–303.
- 208 Heisler, L. K., Chu, H. M., Brennan, T. J., Danao, J. A., Bajwa, P., Parsons, L. H., and Tecott, L. H. (1998). Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc. Natl. Acad. Sci. USA 95, 15049–15054.
- 209 Ramboz, S., Oosting, R., Amara, D. A., Kung, H. F., Blier, P., Mendelsohn, M., Mann, J. J., Brunner, D., and Hen, R. (1998). Serotonin receptor 1A knockout: An animal model of anxiety-related disorder. Proc. Natl. Acad. Sci. USA 95, 14476–14481.
- 210 Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T., and Toth, M. (1998). Increased anxiety of mice lacking the serotonin1A receptor. Proc. Natl. Acad. Sci. USA 95, 10734–10739.
- 211 Sibille, E., Pavlides, C., Benke, D., and Toth, M. (2000). Genetic inactivation of the serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J. Neurosci. 20, 2758–2765.
- 212 He, M., Sibille, E., Benjamin, D., Toth, M., and Shippenberg, T. (2001). Differential effects of 5-HT1A receptor deletion upon basal and fluoxetine-evoked 5-HT concentrations as revealed by in vivo microdialysis. Brain Res. 902, 11–17.
- 213 Bortolozzi, A., Amargos-Bosch, M., Toth, M., Artigas, F., and Adell, A. (2004). In vivo efflux of serotonin in the dorsal raphe nucleus of 5-HT1A receptor knockout mice. J. Neurochem. 88, 1373–1379.
- 214 Parsons, L. H., Kerr, T. M., and Tecott, L. H. (2001). 5-HT(1A) receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. J. Neurochem. 77, 607–617.
- 215 Gross, C., Zhuang, X., Stark, K., Ramboz, S., Oosting, R., Kirby, L., Santarelli, L., Beck, S., and Hen, R. (2002). Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396–400.
- 216 Pattij, T., Groenink, L., Hijzen, T. H., Oosting, R. S., Maes, R. A., van der Gugten, J., and Olivier, B. (2002). Autonomic changes associated with enhanced anxiety in 5-HT(1A) receptor knockout mice. Neuropsychopharmacology 27, 380–390.
- 217 Pattij, T., Hijzen, T. H., Groenink, L., Oosting, R. S., van der Gugten, J., Maes, R. A., Hen, R., and Olivier, B. (2001). Stress-induced hyperthermia in the 5-HT(1A) receptor knockout mouse is normal. Biol. Psychiatry 49, 569–574.
- 218 Boschert, U., Amara, D. A., Segu, L., and Hen, R. (1994). The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58, 167–182.
- 219 Gothert, M. (1990). Presynaptic serotonin receptors in the central nervous system. Ann. NY Acad. Sci. 604, 102–112.
- 220 Zhuang, X., Gross, C., Santarelli, L., Compan, V., Trillat, A. C., and Hen, R. (1999). Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21, 52S–60S.
- 221 Phillips, T. J., Hen, R., and Crabbe, J. C. (1999). Complications associated with genetic background effects in research using knockout mice. Psychopharmacology (Berl.) 147, 5–7.
- 220a Weisstaub, N. V., Zhou, M., Lira, A., Lambe, E., Gonzalez-Maeso, J., Hornung, J. P., Sibille, E., Underwood, M., Itohara, S., Dauer, W. T., Ansorge, M. S., Morelli, E., Mann, J. J., Toth, M., Aghajanian, G., Sealfon, S. C., Hen, R. and Gingrich, J. A. (2006) Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice, Science 313, 536–540.
- 223 Vaughan, J., Donaldson, C., Bittencourt, J., Perrin, M. H., Lewis, K., Sutton, S., Chan, R., Turnbull, A. V., Lovejoy, D., Rivier, C. et al. (1995). Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378, 287–292.
- 224 Moreau, J. L., Kilpatrick, G., and Jenck, F. (1997). Urocortin, a novel neuropeptide with anxiogenic-like properties. Neuroreport 8, 1697–1701.
- 225 Contarino, A., Dellu, F., Koob, G. F., Smith, G. W., Lee, K. F., Vale, W., and Gold, L. H. (1999). Reduced anxiety-like and cognitive performance in mice lacking the corticotropin-releasing factor receptor 1. Brain Res. 835, 1–9.
- 226 Smith, G. W., Aubry, J. M., Dellu, F., Contarino, A., Bilezikjian, L. M., Gold, L. H., Chen, R., Marchuk, Y., Hauser, C., Bentley, C. A., Sawchenko, P. E., Koob, G. F., Vale, W., and Lee, K. F. (1998). Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093–1102.
- 227 Bale, T. L., Contarino, A., Smith, G. W., Chan, R., Gold, L. H., Sawchenko, P. E., Koob, G. F., Vale, W. W., and Lee, K. F. (2000). Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat. Genet. 24, 410–414.
- 228 Kishimoto, T., Radulovic, J., Radulovic, M., Lin, C. R., Schrick, C., Hooshmand, F., Hermanson, O., Rosenfeld, M. G., and Spiess, J. (2000). Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat. Genet. 24, 415–419.
- 229 Coste, S. C., Kesterson, R. A., Heldwein, K. A., Stevens, S. L., Heard, A. D., Hollis, J. H., Murray, S. E., Hill, J. K., Pantely, G. A., Hohimer, A. R., Hatton, D. C., Phillips, T. J., Finn, D. A., Low, M. J., Rittenberg, M. B., Stenzel, P., and Stenzel-Poore, M. P. (2000). Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat. Genet. 24, 403–409.
- 230 Bale, T. L., Picetti, R., Contarino, A., Koob, G. F., Vale, W. W., and Lee, K. F. (2002). Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J. Neurosci. 22, 193–199.
- 231 Steiner, H., Fuchs, S., and Accili, D. (1997). D3 dopamine receptor-deficient mouse: Evidence for reduced anxiety. Physiol. Behav. 63, 137–141.
- 232 Dulawa, S. C., Grandy, D. K., Low, M. J., Paulus, M. P., and Geyer, M. A. (1999). Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli. J. Neurosci. 19, 9550–9556.
- 233 Martin, M., Ledent, C., Parmentier, M., Maldonado, R., and Valverde, O. (2002). Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl.) 159, 379–387.
- 234 Haller, J., Bakos, N., Szirmay, M., Ledent, C., and Freund, T. F. (2002). The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur. J. Neurosci. 16, 1395–1398.
- 235 Degroot, A., and Nomikos, G. G. (2004). Genetic deletion and pharmacological blockade of CB1 receptors modulates anxiety in the shock-probe burying test. Eur. J. Neurosci. 20, 1059–1064.
- 236 Lahdesmaki, J., Sallinen, J., MacDonald, E., Kobilka, B. K., Fagerholm, V., and Scheinin, M. (2002). Behavioral and neurochemical characterization of alpha(2A)-adrenergic receptor knockout mice. Neuroscience 113, 289–299.
- 237 Baldwin, H. A., and File, S. E. (1989). Caffeine-induced anxiogenesis: The role of adenosine, benzodiazepine and noradrenergic receptors. Pharmacol. Biochem. Behav. 32, 181–186.
- 238 Ledent, C., Vaugeois, J. M., Schiffmann, S. N., Pedrazzini, T., El Yacoubi, M., Vanderhaeghen, J. J., Costentin, J., Heath, J. K., Vassart, G., and Parmentier, M. (1997). Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388, 674–678.
- 239 Schiffmann, S. N., and Vanderhaeghen, J. J. (1993). Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons. J. Neurosci. 13, 1080–1087.
- 240 Blednov, Y. A., Stoffel, M., Chang, S. R., and Harris, R. A. (2001). GIRK2 deficient mice. Evidence for hyperactivity and reduced anxiety. Physiol. Behav. 74, 109–117.
- 241 Lesage, F., Duprat, F., Fink, M., Guillemare, E., Coppola, T., Lazdunski, M., and Hugnot, J. P. (1994). Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Lett. 353, 37–42.
- 242 Karschin, C., Dissmann, E., Stuhmer, W., and Karschin, A. (1996). IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci. 16, 3559–3570.
- 243 Costall, B., Kelly, M. E., Naylor, R. J., and Onaivi, E. S. (1989). The actions of nicotine and cocaine in a mouse model of anxiety. Pharmacol. Biochem. Behav. 33, 197–203.
- 244 Brioni, J. D., O'Neill, A. B., Kim, D. J., and Decker, M. W. (1993). Nicotinic receptor agonists exhibit anxiolytic-like effects on the elevated plus-maze test. Eur. J. Pharmacol. 238, 1–8.
- 245 Paylor, R., Nguyen, M., Crawley, J. N., Patrick, J., Beaudet, A., and Orr-Urtreger, A. (1998). Alpha7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: A behavioral characterization of Acra7-deficient mice. Learn. Mem. 5, 302–316.
- 246 Ross, S. A., Wong, J. Y., Clifford, J. J., Kinsella, A., Massalas, J. S., Horne, M. K., Scheffer, I. E., Kola, I., Waddington, J. L., Berkovic, S. F., and Drago, J. (2000). Phenotypic characterization of an alpha 4 neuronal nicotinic acetylcholine receptor subunit knock-out mouse. J. Neurosci. 20, 6431–6441.
- 247 Huang, E. J., and Reichardt, L. F. (2003). Trk receptors: Roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609–642.
- 248 Koponen, E., Voikar, V., Riekki, R., Saarelainen, T., Rauramaa, T., Rauvala, H., Taira, T., and Castren, E. (2004). Transgenic mice overexpressing the full-length neurotrophin receptor trkB exhibit increased activation of the trkB-PLCgamma pathway, reduced anxiety, and facilitated learning. Mol. Cell. Neurosci. 26, 166–181.
- 249 Sandi, C. (2004). Stress, cognitive impairment and cell adhesion molecules. Nat. Rev. Neurosci. 5, 917–930.
- 250
Stork, O.,
Welzl, H.,
Wotjak, C. T.,
Hoyer, D.,
Delling, M.,
Cremer, H., and
Schachner, M.
(1999).
Anxiety and increased 5-HT1A receptor response in NCAM null mutant mice.
J. Neurobiol.
40,
343–355.
10.1002/(SICI)1097-4695(19990905)40:3<343::AID-NEU6>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 251 Law, J. W., Lee, A. Y., Sun, M., Nikonenko, A. G., Chung, S. K., Dityatev, A., Schachner, M., and Morellini, F. (2003). Decreased anxiety, altered place learning, and increased CA1 basal excitatory synaptic transmission in mice with conditional ablation of the neural cell adhesion molecule L1. J. Neurosci. 23, 10419–10432.
- 252 Manabe, T., Togashi, H., Uchida, N., Suzuki, S. C., Hayakawa, Y., Yamamoto, M., Yoda, H., Miyakawa, T., Takeichi, M., and Chisaka, O. (2000). Loss of cadherin-11 adhesion receptor enhances plastic changes in hippocampal synapses and modifies behavioral responses. Mol. Cell. Neurosci. 15, 534–546.
- 253 Yamagata, M., Sanes, J. R., and Weiner, J. A. (2003). Synaptic adhesion molecules. Curr. Opin. Cell. Biol. 15, 621–632.
- 254 Chen, C., Rainnie, D. G., Greene, R. W., and Tonegawa, S. (1994). Abnormal fear response and aggressive behavior in mutant mice deficient for alpha-calcium-calmodulin kinase II. Science 266, 291–294.
- 255 Kennedy, M. B. (1997). The postsynaptic density at glutamatergic synapses. Trends Neurosci. 20, 264–268.
- 256 Braun, A. P., and Schulman, H. (1995). The multifunctional calcium/calmodulin-dependent protein kinase: From form to function. Annu. Rev. Physiol. 57, 417–445.
- 257 Bowers, B. J., Collins, A. C., Tritto, T., and Wehner, J. M. (2000). Mice lacking PKC gamma exhibit decreased anxiety. Behav. Genet. 30, 111–121.
- 258 Miyakawa, T., Yagi, T., Watanabe, S., and Niki, H. (1994). Increased fearfulness of Fyn tyrosine kinase deficient mice. Brain Res. Mol. Brain Res. 27, 179–182.
- 259 Grant, S. G. (1996). Analysis of NMDA receptor mediated synaptic plasticity using gene targeting: Roles of Fyn and FAK non-receptor tyrosine kinases. J. Physiol. Paris 90, 337–338.
- 260 Beggs, H. E., Baragona, S. C., Hemperly, J. J., and Maness, P. F. (1997). NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC-related tyrosine kinase p59(fyn). J. Biol. Chem. 272, 8310–8319.
- 261 Seiwa, C., Sugiyama, I., Yagi, T., Iguchi, T., and Asou, H. (2000). Fyn tyrosine kinase participates in the compact myelin sheath formation in the central nervous system. Neurosci. Res. 37, 21–31.
- 262 Kassed, C. A., and Herkenham, M. (2004). NF-kappaB p50-deficient mice show reduced anxiety-like behaviors in tests of exploratory drive and anxiety. Behav. Brain Res. 154, 577–584.
- 263 Kaltschmidt, C., Kaltschmidt, B., Neumann, H., Wekerle, H., and Baeuerle, P. A. (1994). Constitutive NF-kappa B activity in neurons. Mol. Cell. Biol. 14, 3981–3992.
- 264 Schmidt-Ullrich, R., Memet, S., Lilienbaum, A., Feuillard, J., Raphael, M., and Israel, A. (1996). NF-kappaB activity in transgenic mice: Developmental regulation and tissue specificity. Development 122, 2117–2128.
- 265 Tronche, F., Kellendonk, C., Kretz, O., Gass, P., Anlag, K., Orban, P. C., Bock, R., Klein, R., and Schutz, G. (1999). Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103.
- 266 Pepin, M. C., Pothier, F., and Barden, N. (1992). Impaired type II glucocorticoid-receptor function in mice bearing antisense RNA transgene. Nature 355, 725–728.
- 267 Wei, Q., Lu, X. Y., Liu, L., Schafer, G., Shieh, K. R., Burke, S., Robinson, T. E., Watson, S. J., Seasholtz, A. F., and Akil, H. (2004). Glucocorticoid receptor overexpression in forebrain: A mouse model of increased emotional lability. Proc. Natl. Acad. Sci. USA 101, 11851–11856.
- 268 Kalueff, A. V., Lou, Y. R., Laaksi, I., and Tuohimaa, P. (2004). Increased anxiety in mice lacking vitamin D receptor gene. Neuroreport 15, 1271–1274.
- 269 Montminy, M. (1997). Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66, 807–822.
- 270 Valverde, O., Mantamadiotis, T., Torrecilla, M., Ugedo, L., Pineda, J., Bleckmann, S., Gass, P., Kretz, O., Mitchell, J. M., Schutz, G., and Maldonado, R. (2004). Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice. Neuropsychopharmacology 29, 1122–1133.
- 271 Blendy, J. A., Kaestner, K. H., Schmid, W., Gass, P., and Schutz, G. (1996). Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO. J. 15, 1098–1106.
- 272 Maldonado, R., Smadja, C., Mazzucchelli, C., and Sassone-Corsi, P. (1999). Altered emotional and locomotor responses in mice deficient in the transcription factor CREM. Proc. Natl. Acad. Sci. USA 96, 14094–14099.
- 273 Lewejohann, L., Skryabin, B. V., Sachser, N., Prehn, C., Heiduschka, P., Thanos, S., Jordan, U., Dell'Omo, G., Vyssotski, A. L., Pleskacheva, M. G., Lipp, H. P., Tiedge, H., Brosius, J., and Prior, H. (2004). Role of a neuronal small non-messenger RNA: Behavioural alterations in BC1 RNA-deleted mice. Behav. Brain. Res. 154, 273–289.
- 274 Turri, M. G., Henderson, N. D., DeFries, J. C., and Flint, J. (2001). Quantitative trait locus mapping in laboratory mice derived from a replicated selection experiment for open-field activity. Genetics 158, 1217–1226.
- 275 Turri, M. G., DeFries, J. C., Henderson, N. D., and Flint, J. (2004). Multivariate analysis of quantitative trait loci influencing variation in anxiety-related behavior in laboratory mice. Mamm. Genome. 15, 69–76.
- 276 Ren-Patterson, R. F., Cochran, L. W., Holmes, A., Sherrill, S., Huang, S. J., Tolliver, T., Lesch, K. P., Lu, B., and Murphy, D. L., (2005). Loss of brain-derived neurotrophic factor gene allele exacerbates brain monoamine deficiencies and increases stress abnormalities of serotonin transporter knockout mice, J. Neurosci. Res. 79, 756–771.
- 277 Chen, K., Holschneider, D. P., Wu, W., Rebrin, I., and Shih, J. C. (2004). A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behavior. J. Biol. Chem. 279, 39645–39652.
- 278 Grimsby, J., Toth, M., Chen, K., Kumazawa, T., Klaidman, L., Adams, J. D., Karoum, F., Gal, J., and Shih, J. C. (1997). Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat. Genet. 17, 206–210.
- 279 Cases, O., Seif, I., Grimsby, J., Gaspar, P., Chen, K., Pournin, S., Muller, U., Aguet, M., Babinet, C., Shih, J. C. et al. (1995). Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268, 1763–1766.
- 280 Meaney, M. J., Diorio, J., Francis, D., Widdowson, J., LaPlante, P., Caldji, C., Sharma, S., Seckl, J. R., and Plotsky, P. M. (1996). Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress. Dev. Neurosci. 18, 49–72.
- 281 Plotsky, P. M., and Meaney, M. J. (1993). Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res. Mol. Brain Res. 18, 195–200.
- 282 Kalinichev, M., Easterling, K. W., Plotsky, P. M., and Holtzman, S. G. (2002). Long-lasting changes in stress-induced corticosterone response and anxiety-like behaviors as a consequence of neonatal maternal separation in Long-Evans rats. Pharmacol. Biochem. Behav. 73, 131–140.
- 283 Francis, D. D., and Meaney, M. J. (1999). Maternal care and the development of stress responses. Curr. Opin. Neurobiol. 9, 128–134.
- 284 Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu. Rev. Neurosci. 24, 1161–1192.
- 285 Menard, J. L., Champagne, D. L., and Meaney, M. J. (2004). Variations of maternal care differentially influence “fear” reactivity and regional patterns of cFos immunoreactivity in response to the shock-probe burying test. Neuroscience 129, 297–308.
- 286 Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., and Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc. Natl. Acad. Sci. USA 95, 5335–5340.
- 287 Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P. M., and Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277, 1659–1662.
- 288 Champagne, F., and Meaney, M. J. (2001). Like mother, like daughter: Evidence for non-genomic transmission of parental behavior and stress responsivity. Prog. Brain Res. 133, 287–302.
- 289 Forray, M. I., and Gysling, K. (2004). Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic-pituitary-adrenal axis. Brain Res. Brain Res. Rev. 47, 145–160.
- 290 Herman, J. P., Mueller, N. K., and Figueiredo, H. (2004). Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann. NY Acad. Sci. 1018, 35–45.
- 291 Caldji, C., Diorio, J., and Meaney, M. J. (2003). Variations in maternal care alter GABA(A) receptor subunit expression in brain regions associated with fear. Neuropsychopharmacology 28, 1950–1959.
- 292 Caldji, C., Diorio, J., Anisman, H., and Meaney, M. J. (2004). Maternal behavior regulates benzodiazepine/GABAA receptor subunit expression in brain regions associated with fear in BALB/c and C57BL/6 mice. Neuropsychopharmacology 29, 1344–1352.
- 293 Liu, D., Diorio, J., Day, J. C., Francis, D. D., and Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat. Neurosci. 3, 799–806.
- 291a Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M. and Meaney, M. J. (2004) Epigenetic programming by maternal behavior, Nat Neurosci. 7, 847–854.
- 295 Marini, A. M., Rabin, S. J., Lipsky, R. H., and Mocchetti, I. (1998). Activity-dependent release of brain-derived neurotrophic factor underlies the neuroprotective effect of N-methyl-d-aspartate. J. Biol. Chem. 273, 29394–29399.
- 296 Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., McClay, J., Mill, J., Martin, J., Braithwaite, A., and Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389.
- 297 Champoux, M., Bennett, A., Shannon, C., Higley, J. D., Lesch, K. P., and Suomi, S. J. (2002). Serotonin transporter gene polymorphism, differential early rearing, and behavior in rhesus monkey neonates. Mol. Psychiatry 7, 1058–1063.
- 298 Bennett, A. J., Lesch, K. P., Heils, A., Long, J. C., Lorenz, J. G., Shoaf, S. E., Champoux, M., Suomi, S. J., Linnoila, M. V., and Higley, J. D. (2002). Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol. Psychiatry 7, 118–122.
- 299 Barr, C. S., Newman, T. K., Shannon, C., Parker, C., Dvoskin, R. L., Becker, M. L., Schwandt, M., Champoux, M., Lesch, K. P., Goldman, D., Suomi, S. J., and Higley, J. D. (2004). Rearing condition and rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biol. Psychiatry 55, 733–738.
- 300 Crawley, J. N., Belknap, J. K., Collins, A., Crabbe, J. C., Frankel, W., Henderson, N., Hitzemann, R. J., Maxson, S. C., Miner, L. L., Silva, A. J., Wehner, J. M., Wynshaw-Boris, A., and Paylor, R. (1997). Behavioral phenotypes of inbred mouse strains: Implications and recommendations for molecular studies. Psychopharmacology (Berl.) 132, 107–124.
- 301 Anisman, H., Zaharia, M. D., Meaney, M. J., and Merali, Z. (1998). Do early life events permanently alter behavioral and hormonal responses to stressors? Int. J. Dev. Neurosci. 16, 149–164.
- 302 Zaharia, M. D., Kulczycki, J., Shanks, N., Meaney, M. J., and Anisman, H. (1996). The effects of early postnatal stimulation on Morris water-maze acquisition in adult mice: Genetic and maternal factors. Psychopharmacology (Berl.) 128, 227–239.
- 303 Weller, A., Leguisamo, A. C., Towns, L., Ramboz, S., Bagiella, E., Hofer, M., Hen, R., and Brunner, D. (2003). Maternal effects in infant and adult phenotypes of 5HT1A and 5HT1B receptor knockout mice. Dev. Psychobiol. 42, 194–205.
- 304 Ouagazzal, A. M., Moreau, J. L., Pauly Evers, M., and Jenck, F. (2003). Impact of environmental housing conditions on the emotional responses of mice deficient for nociceptin/orphanin FQ peptide precursor gene. Behav. Brain Res. 144, 111–117.
- 305 Wood, S. J., and Toth, M. (2001). Molecular pathways of anxiety revealed by knockout mice. Mol. Neurobiol. 23, 101–119.
- 306 Della Rocca, G. J., Mukhin, Y. V., Garnovskaya, M. N., Daaka, Y., Clark, G. J., Luttrell, L. M., Lefkowitz, R. J., and Raymond, J. R. (1999). Serotonin 5-HT1A receptor-mediated Erk activation requires calcium/calmodulin-dependent receptor endocytosis. J. Biol. Chem. 274, 4749–4753.
- 307 Cowen, D. S., Sowers, R. S., and Manning, D. R. (1996). Activation of a mitogen-activated protein kinase (ERK2) by the 5-hydroxytryptamine1A receptor is sensitive not only to inhibitors of phosphatidylinositol 3-kinase, but to an inhibitor of phosphatidylcholine hydrolysis. J. Biol. Chem. 271, 22297–22300.
- 308 Cowen, D. S., Molinoff, P. B., and Manning, D. R. (1997). 5-Hydroxytryptamine1A receptor-mediated increases in receptor expression and activation of nuclear factor-kappaB in transfected Chinese hamster ovary cells. Mol. Pharmacol. 52, 221–226.
- 309 Garnovskaya, M. N., van Biesen, T., Hawe, B., Casanas Ramos, S., Lefkowitz, R. J., and Raymond, J. R. (1996). Ras-dependent activation of fibroblast mitogen-activated protein kinase by 5-HT1A receptor via a G protein beta gamma-subunit-initiated pathway. Biochemistry 35, 13716–13722.
- 310 Adayev, T., Ray, I., Sondhi, R., Sobocki, T., and Banerjee, P. (2003). The G protein-coupled 5-HT1A receptor causes suppression of caspase-3 through MAPK and protein kinase Calpha. Biochim. Biophys. Acta 1640, 85–96.
- 311 Magarinos, A. M., McEwen, B. S., Flugge, G., and Fuchs, E. (1996). Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J. Neurosci. 16, 3534–3540.
- 312 Vyas, A., Mitra, R., Shankaranarayana Rao, B. S., and Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818.
- 313 McEwen, B. S., and Magarinos, A. M. (2001). Stress and hippocampal plasticity: Implications for the pathophysiology of affective disorders. Hum. Psychopharmacol. 16, S7–S19.
- 314 Rainnie, D. G., Bergeron, R., Sajdyk, T. J., Patil, M., Gehlert, D. R., and Shekhar, A. (2004). Corticotrophin releasing factor-induced synaptic plasticity in the amygdala translates stress into emotional disorders. J. Neurosci. 24, 3471–3479.
- 315 Carter, A. R., Chen, C., Schwartz, P. M., and Segal, R. A. (2002). Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J. Neurosci. 22, 1316–1327.
- 316 Sarnyai, Z., Sibille, E. L., Pavlides, C., Fenster, R. J., McEwen, B. S., and Toth, M. (2000). Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc. Natl. Acad. Sci. USA 97, 14731–14736.
- 317 Salome, N., Salchner, P., Viltart, O., Sequeira, H., Wigger, A., Landgraf, R., and Singewald, N. (2004). Neurobiological correlates of high (HAB) versus low anxiety-related behavior (LAB): Differential Fos expression in HAB and LAB rats. Biol. Psychiatry 55, 715–723.