Neuronal Nicotinic Receptors: One Hundred Years of Progress
Abstract
Neuronal nicotinic cholinergic receptors mediate the actions of acetylcholine in ganglia and the CNS. These receptors are pentameric proteins formed from combinations of 12 different subunits. Thus, this family of receptors consists of multiple subtypes defined by their subunit composition. All of the receptors are ligand-gated cation channels that pass sodium, potassium and calcium, but the different subtypes have different biophysical and pharmacological characteristics. These receptors are located on the axons of catecholamine, GABA, acetylcholine and glutamate neurons, so they can influence a large number of diverse functions in the nervous system. In addition to mediating the essential actions of endogenous acetylcholine, these receptors are the primary target of nicotine, the addictive agent in tobacco. Thus, these receptors are directly related to the single most preventable cause of premature morbidity and mortality. In this chapter, we review some of the fundamental aspects of these receptors, with emphasis on the differences in pharmacology among the receptor subtypes and their unusual regulation by exposure to nicotine.
References
- 1 Fiore, M. C. (2000). US public health service clinical practice guideline: Treating tobacco use and dependence. Respir. Care 45, 1200–1262.
- 2 Wonnacott, S. (1997). Presynaptic nicotinic ACh receptors. Trends Neurosci. 20, 92–98.
- 3 Langley, J. N. (1905). On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curare. J. Physiol. (Lond.) 33, 374–384.
- 4
Langley, J. N.
(1907).
On the contraction of muscle, chiefly in relation to the presence of “receptive” substances.
J. Physiol. (Lond.)
37,
347–384.
10.1113/jphysiol.1907.sp001236 Google Scholar
- 5 Ehrlich, P. (1913). Chemotherapeutics: Scientific principles, methods and results. Lancet 2, 445–451.
- 6 Changeux, J. P., Kasai, M. and Lee, C. Y. (1970). Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc. Natl. Acad. Sci. USA 67, 1241–1247.
- 7 Conti-Tronconi, B. M. and Raftery, M. A. (1982). The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties. Annu. Rev. Biochem. 51, 491–530.
- 8 Galzi, J. L. and Changeux, J. P. (1995). Neuronal nicotinic receptors: Molecular organization and regulations. Neuropharmacology 34, 563–582.
- 9 Karlin, A. (2002). Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3, 102–114.
- 10 Karlin, A. and Akabas, M. H. (1995). Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15, 1231–1244.
- 11 McIntyre, A. R. (1947). Curare: Its History, Nature and Clinical Use. The University of Chicago Press, Chicago, IL, pp. 1–35.
- 12 Nachmansohn, D. (1972). Biochemistry as part of my life. Annu. Rev. Biochem. 41, 1–28.
- 13 Chang, C. C. and Lee, C. Y. (1963). Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action. Arch. Int. Pharmacodyn. Ther. 144, 241–257.
- 14 Chang, C. C. (1999). Looking back on the discovery of alpha-bungarotoxin. J. Biomed. Sci. 6, 368–375.
- 15 Olsen, R. W., Meunier, J. C. and Changeux, J. P. (1972). Progress in the purification of the cholinergic receptor protein from Electrophorus electricus by affinity chromatography. FEBS Lett. 28, 96–100.
- 16 Karlin, A. (1989). Explorations of the nicotinic acetylcholine receptor. Harvey Lect. 85, 71–107.
- 17 Karlin, A., Cox, R., Kaldany, R. R., Lobel, P. and Holtzman, E. (1983). The arrangement and functions of the chains of the acetylcholine receptor of Torpedo electric tissue. Cold Spring Harb. Symp. Quant. Biol. 48(Pt. 1), 1–8.
- 18 Unwin, N. (1993). Nicotinic acetylcholine receptor at 9 A resolution. J. Mol. Biol. 229, 1101–1124.
- 19 Unwin, N. (2005). Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 346, 967–989.
- 20 Ballivet, M., Patrick, J., Lee, J. and Heinemann, S. (1982). Molecular cloning of cDNA coding for the gamma subunit of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 79, 4466–4470.
- 21 Giraudat, J., Devillers-Thiery, A., Auffray, C., Rougeon, F. and Changeux, J.P. (1982). Identification of a cDNA clone coding for the acetylcholine binding subunit of Torpedo marmorata acetylcholine receptor. EMBO J. 1, 713–717.
- 22 Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. and Numa, S. (1982). Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793–797.
- 23 Sumikawa, K., Houghton, M., Smith, J.C., Bell, L., Richards, B.M. and Barnard, E.A. (1982). The molecular cloning and characterisation of cDNA coding for the alpha subunit of the acetylcholine receptor. Nucleic Acids Res. 10, 5809–5822.
- 24 Claudio, T., Ballivet, M., Patrick, J. and Heinemann, S. (1983). Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gamma subunit. Proc. Natl. Acad. Sci. USA 80, 1111–1115.
- 25 Devillers-Thiery, A., Giraudat, J., Bentaboulet, M. and Changeux, J.P. (1983). Complete mRNA coding sequence of the acetylcholine binding alpha-subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. USA 80, 2067–2071.
- 26 Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T., et al. (1983). Primary structures of beta- and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301, 251–255.
- 27 Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., et al. (1983). Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302, 528–532.
- 28 Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S., et al. (1983). Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor. Nature 305, 818–823.
- 29 Numa, S. (1987). A molecular view of neurotransmitter receptors and ionic channels. Harvey Lect. 83, 121–165.
- 30
Hille, B.
(2001).
Ion Channels of Excitable Membranes.
Sinauer Associates, Sunderland, MA.
10.1111/j.1540-8167.1998.tb01847.x Google Scholar
- 31 Paton, D. M. and Zaimis, E. J. (1952). The Methonium compounds. Pharmacol. Rev. 4, 219–253.
- 32 Paton, D. M. and Zaimis, E. J. (1949). The pharmacological actions of polymethylene bis-trimethylammonium salts. Br. J. Pharmacol. 4, 381–400.
- 33 Taylor, P. and Insel, P. A. (1990). Molecular basis of pharmacological selectivity. In Principles of Drug Action, W. B. Pratt, and P. Taylor, Eds. Churchill Livingstone, New York. pp. 1–102.
- 34 Boulter, J., Evans, K., Martin, G., Mason, P., Stengelin, S., Goldman, D., Heinemann, S. and Patrick, J. (1986). Isolation and sequence of cDNA clones coding for the precursor to the gamma subunit of mouse muscle nicotinic acetylcholine receptor. J. Neurosci. Res. 16, 37–49.
- 35 Nef, P., Oneyser, C., Alliod, C., Couturier, S. and Ballivet, M. (1988). Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J. 7, 595–601.
- 36 Patrick, J., Boulter, J., Deneris, E., Wada, K., Wada, E., Connolly, J., Swanson, L. and Heinemann, S. (1989). Structure and function of neuronal nicotinic acetylcholine receptors deduced from cDNA clones. Prog. Brain Res. 79, 27–33.
- 37 Wada, E., Wada, K., Boulter, J., Deneris, E., Heinemann, S., Patrick, J. and Swanson, L. W. (1989). Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat. J. Comp. Neurol. 284, 314–335.
- 38 Couturier, S., Erkman, L., Valera, S., Rungger, D., Bertrand, S., Boulter, J., Ballivet, M. and Bertrand, D. (1990). Alpha 5, alpha 3, and non-alpha 3. Three clustered avian genes encoding neuronal nicotinic acetylcholine receptor-related subunits. J. Biol. Chem. 265, 17560–17567.
- 39 Schoepfer, R., Conroy, W. G., Whiting, P., Gore, M. and Lindstrom, J. (1990). Brain alpha-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron 5, 35–48.
- 40 Sargent, P. B. (1993). The diversity of neuronal nicotinic acetylcholine receptors. Annu. Rev. Neurosci. 16, 403–443.
- 41
Lukas, R. J.
(1998).
Neuronal nicotinic acetylcholine receptors.
In The Nicotinic Acetylcholine Receptors: Current Views and Future Trends,
F. J. Barrantes Eds.
Springer-Verlag, Berlin,
pp. 145–173.
10.1007/978-3-662-40279-5_7 Google Scholar
- 42
Lindstrom, J. M.
(2002).
Acetylcholine receptor structure.
In Current Clinical Neurology: Myasthenia Gravis and Related Disorders,
H. J. Kaminski Eds.
Human Press, New York,
pp. 15–52.
10.1385/1-59259-341-0:15 Google Scholar
- 43 Gotti, C. and Clementi, F. (2004). Neuronal nicotinic receptors: From structure to pathology. Prog. Neurobiol. 74, 363–396.
- 44 Miyazawa, A., Fujiyoshi, Y. and Unwin, N. (2003). Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955.
- 45 Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van Der Oost, J., Smit, A. B. and Sixma, T. K. (2001). Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276.
- 46 Karlin, A. and Bartels, E. (1966). Effects of blocking sulfhydryl groups and of reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax. Biochim. Biophys. Acta 126, 525–535.
- 47 Kao, P. N., Dwork, A. J., Kaldany, R. R., Silver, M. L., Wideman, J., Stein, S. and Karlin, A. (1984). Identification of the alpha subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J. Biol. Chem. 259, 11662–11665.
- 48 Schwartz, R. D. and Kellar, K. J. (1983). [3H]Acetylcholine binding sites in brain. Effect of disulfide bond modification. Mol. Pharmacol. 24, 387–391.
- 49 Marks, M. J., Stitzel, J. A., Romm, E., Wehner, J. M., Collins, A. C. (1986). Nicotinic binding sites in rat and mouse brain: Comparison of acetylcholine, nicotine, and alpha-bungarotoxin. Mol. Pharmacol. 30, 427–436.
- 50 Vernallis, A. B., Conroy, W. G. and Berg, D. K. (1993). Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes. Neuron 10, 451–464.
- 51 Conroy, W. G. and Berg, D. K. (1995). Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions. J. Biol. Chem. 270, 4424–4431.
- 52 Conroy, W. G. and Berg, D. K. (1998). Nicotinic receptor subtypes in the developing chick brain: Appearance of a species containing the alpha4, beta2, and alpha5 gene products. Mol. Pharmacol. 53, 392–401.
- 53 Vailati, S., Moretti, M., Longhi, R., Rovati, G. E., Clementi, F. and Gotti, C. (2003). Developmental expression of heteromeric nicotinic receptor subtypes in chick retina. Mol. Pharmacol. 63, 1329–1337.
- 54 Moretti, M., Vailati, S., Zoli, M., Lippi, G., Riganti, L., Longhi, R., Viegi, A., Clementi, F. and Gotti, C. (2004). Nicotinic acetylcholine receptor subtypes expression during rat retina development and their regulation by visual experience. Mol. Pharmacol. 66, 85–96.
- 55 Zoli, M., Moretti, M., Zanardi, A., McIntosh, J. M., Clementi, F. and Gotti, C. (2002). Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J. Neurosci. 22, 8785–8789.
- 56 Marritt, A. M., Cox, B. C., Yasuda, R. P., McIntosh, J. M., Xiao, Y., Wolfe, B. B. and Kellar, K. J. (2005). Nicotinic cholinergic receptors in the rat retina: Simple and mixed heteromeric subtypes. Mol. Pharmacol. 68, 1656–1668.
- 57 Turner, J. R. and Kellar, K. J. (2005). Nicotinic cholinergic receptors in the rat cerebellum: Multiple heteromeric subtypes. J. Neurosci. 25, 9258–9265.
- 58 Leonard, S. and Bertrand, D. (2001). Neuronal nicotinic receptors: From structure to function. Nicotine Tob. Res. 3, 203–223.
- 59 Berg, D. K. and Conroy, W. G. (2002). Nicotinic alpha 7 receptors: Synaptic options and downstream signaling in neurons. J. Neurobiol. 53, 512–523.
- 60 Elgoyhen, A. B., Johnson, D. S., Boulter, J., Vetter, D. E. and Heinemann, S. (1994). Alpha 9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79, 705–715.
- 61 Ballestero, J. A., Plazas, P. V., Kracun, S., Gomez-Casati, M. E., Taranda, J., Rothlin, C. V., Katz, E., Millar, N. S. and Elgoyhen, A. B. (2005). Effects of quinine, quinidine, and chloroquine on alpha9alpha10 nicotinic cholinergic receptors. Mol. Pharmacol. 68, 822–829.
- 62 Conroy, W. G., Vernallis, A. B. and Berg, D. K. (1992). The alpha 5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron 9, 679–691.
- 63 Ramirez-Latorre, J., Yu, C. R., Qu, X., Perin, F., Karlin, A. and Role, L. (1996). Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380, 347–351.
- 64 Groot-Kormelink, P. J., Luyten, W. H., Colquhoun, D. and Sivilotti, L. G. (1998). A reporter mutation approach shows incorporation of the “orphan” subunit beta3 into a functional nicotinic receptor. J. Biol. Chem. 273, 15317–15320.
- 65 Lukas, R. J., Changeux, J. P., Le Novere, N., Albuquerque, E. X., Balfour, D. J., Berg, D. K., Bertrand, D., Chiappinelli, V. A., Clarke, P. B., Collins, A. C., et al. (1999). International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol. Rev. 51, 397–401.
- 66 Westfall, T. C. (1974). Effect of nicotine and other drugs on the release of 3H-norepinephrine and 3H-dopamine from rat brain slices. Neuropharmacology 13, 693–700.
- 67 Giorguieff, M. F., Le Floc'h, M. L., Westfall, T. C., Glowinski, J. and Besson, M. J. (1976). Nicotinic effect of acetylcholine on the release of newly synthesized (3H)dopamine in rat striatal slices and cat caudate nucleus. Brain Res. 106, 117–131.
- 68 De Belleroche, J. and Bradford, H. F. (1978). Biochemical evidence for the presence of presynaptic receptors on dopaminergic nerve terminals. Brain Res. 142, 53–68.
- 69 Giorguieff-Chesselet, M. F., Kemel, M. L., Wandscheer, D. and Glowinski, J. (1979). Regulation of dopamine release by presynaptic nicotinic receptors in rat striatal slices: Effect of nicotine in a low concentration. Life Sci. 25, 1257–1262.
- 70 Izquierdo, I. and Izquierdo, J. A. (1971). Effects of drugs on deep brain centers. Annu. Rev. Pharmacol. 11, 189–208.
- 71 Morley, B. J., Lorden, J. F., Brown, G. B., Kemp, G. E. and Bradley, R. J. (1977). Regional distribution of nicotinic acetylcholine receptor in rat brain. Brain Res. 134, 161–166.
- 72 Clarke, P. B. S., Schwartz, R. D., Paul, S. M., Pert, C. B. and Pert, A. (1985). Nicotine binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine and [125I]α-bungarotoxin. J. Neurosci. 5, 1307–1315.
- 73 Patrick, J. and Stallcup, B. (1977). Alpha-bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line. J. Biol. Chem. 252, 8629–8633.
- 74 Brown, D.A. and Fumagalli, L. (1977). Dissociation of alpha-bungarotoxin binding and receptor block in the rat superior cervical ganglion. Brain Res. 129, 165–168.
- 75 Carbonetto, S. T., Fambrough, D. M. and Muller, K. J. (1978). Nonequivalence of alpha-bungarotoxin receptors and acetylcholine receptors in chick sympathetic neurons. Proc. Natl. Acad. Sci. USA 75, 1016–1020.
- 76 Bertrand, D., Galzi, J. L., Devillers-Thiery, A., Bertrand, S. and Changeux, J. P. (1993). Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. Proc. Natl. Acad. Sci. USA 90, 6971–6975.
- 77 Seguela, P., Wadiche, J., Dineley-Miller, K., Dani, J. A. and Patrick, J. W. (1993). Molecular cloning, functional properties, and distribution of rat brain alpha 7: A nicotinic cation channel highly permeable to calcium. J. Neurosci. 13, 596–604.
- 77a Davies, A. R., Hardick, D. J., Blagbrough, I. S., Potter, B. V., Wolstenholme, A. J. and Wonnacott, S. (1999). Characterisation of the binding of [3H]methyllycaconitine: A new radioligand for labelling alpha 7-type neuronal nicotinic acetylcholine receptors. Neuropharmacology 38, 679–690.
- 77b Peng, J. H., Fryer, J. D., Hurst, R. S., Schroeder, K. M., George, A. A., Morrissy, S., Groppi, V. E., Leonard, S. S. and Lukas, R. J. (2005). High-affinity epibatidine binding of functional, human alpha7-nicotinic acetylcholine receptors stably and heterologously expressed de novo in human SH-EP1 cells. J. Pharmacol. Exp. Ther. 313, 24–35.
- 80 Gerzanich, V., Anand, R. and Lindstrom, J. (1994). Homomers of alpha 8 and alpha 7 subunits of nicotinic receptors exhibit similar channel but contrasting binding site properties. Mol. Pharmacol. 45, 212–220.
- 81 Chavez-Noriega, L. E., Crona, J. H., Washburn, M. S., Urrutia, A., Elliott, K. J. and Johnson, E. C. (1997). Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther. 280, 346–356.
- 82 Gopalakrishnan, M., Buisson, B., Touma, E., Giordano, T., Campbell, J. E., Hu, I. C., Donnelly-Roberts, D., Arneric, S. P., Bertrand, D. and Sullivan, J. P. (1995). Stable expression and pharmacological properties of the human alpha 7 nicotinic acetylcholine receptor. Eur. J. Pharmacol. 290, 237–246.
- 83 Zhao, L., Kuo, Y. P., George, A. A., Peng, J. H., Purandare, M. S., Schroeder, K. M., Lukas, R. J. and Wu, J. (2003). Functional properties of homomeric, human alpha 7-nicotinic acetylcholine receptors heterologously expressed in the SH-EP1 human epithelial cell line. J. Pharmacol. Exp. Ther. 305, 1132–1141.
- 84 Alkondon, M., Pereira, E. F., Cortes, W. S., Maelicke, A. and Albuquerque, E. X. (1997). Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons. Eur. J. Neurosci. 9, 2734–2742.
- 85 Yoshida, K. and Imura, H. (1979). Nicotinic cholinergic receptors in brain synaptosomes. Brain Res. 172, 453–459.
- 86 Abood, L. G., Reynolds, D. T. and Bidlack, J. M. (1980). Stereospecific 3H-nicotine binding to intact and solubilized rat brain membranes and evidence for its noncholinergic nature. Life Sci. 27, 1307–1314.
- 87 Romano, C. and Goldstein, A. (1980). Stereospecific nicotine receptors on rat brain membranes. Science 210, 647–650.
- 88 Schwartz, R. D., McGee, R., Jr. and Kellar, K. J. (1982). Nicotinic cholinergic receptors labeled by [3H]acetylcholine in rat brain. Mol. Pharmacol. 22, 56–62.
- 89 Marks, M. J. and Collins, A. C. (1982). Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate. Mol. Pharmacol. 22, 554–564.
- 90 Ascher, P., Large, W. A. and Rang, H. P. (1979). Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells. J. Physiol. 295, 139–170.
- 91 Varanda, W., Aracava, Y., Sherby, S. M., Eldefrawi, M. E. and Albuquerque, E. X. (1984). Site of action of mecamylamine on nicotinic acetylcholine receptor ion channel complex of muscle and electroplax. Fed. Proc. 43, 451–464.
- 92 Martino-Barrows, A. M. and Kellar, K. J. (1987). [3H]Acetylcholine and [3H](–)nicotine label the same recognition site in rat brain. Mol. Pharmacol. 31, 169–174.
- 93 Pabreza, L. A., Dhawan, S. and Kellar, K. J. (1991). [3H]Cytisine binding to nicotinic cholinergic receptors in brain. Mol. Pharmacol. 39, 9–12.
- 94 Hall, M., Zerbe, L., Leonard, S. and Freedman, R. (1993). Characterization of [3H]cytisine binding to human brain membrane preparations. Brain Res. 600, 127–133.
- 95 Happe, H. K., Peters, J. L., Bergman, D. A. and Murrin, L. C. (1994). Localization of nicotinic cholinergic receptors in rat brain: Autoradiographic studies with [3H]cytisine. Neuroscience 62, 929–944.
- 96 Aubert, I., Cecyre, D., Gautier, S. and Quirion, R. (1994). Autoradiographic distribution of nicotinic receptor sites labeled with [3H]cytisine in human brain. In Effects of Nicotine on Biological systems, Vol. 2, P. Clarke, M. Quik, M. Adlkofer, and K. Thurau, Eds. Birkhauser, Verlag, pp. 363–369.
- 97 Heinemann, S., Boulter, J., Connolly, J., Deneris, E., Duvoisin, R., Hartley, M., Hermans-Borgmeyer, I., Hollmann, M., O'Shea-Greenfield, A., Papke, R., et al. (1991). The nicotinic receptor genes. Clin. Neuropharmacol. 14(Suppl. 1), S45–S61.
- 98
Winzer-Serhan, U. H. and Leslie, F. M.
(1997).
Codistribution of nicotinic acetylcholine receptor subunit alpha3 and beta4 mRNAs during rat brain development.
J. Comp. Neurol.
386,
540–554.
10.1002/(SICI)1096-9861(19971006)386:4<540::AID-CNE2>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 99 Whiting, P. J. and Lindstrom, J. M. (1986). Purification and characterization of a nicotinic acetylcholine receptor from chick brain. Biochemistry 25, 2082–2093.
- 100 Whiting, P., Esch, F., Shimasaki, S. and Lindstrom, J. (1987). Neuronal nicotinic acetylcholine receptor beta-subunit is coded for by the cDNA clone alpha 4. FEBS Lett. 219, 459–463.
- 101 Rogers, S. W., Mandelzys, A., Deneris, E. S., Cooper, E. and Heinemann, S. (1992). The expression of nicotinic acetylcholine receptors by PC12 cells treated with NGF. J. Neurosci. 12, 4611–4623.
- 102 Britto, L. R., Rogers, S. W., Hamassaki-Britto, D. E. and Duvoisin, R. M. (1994). Nicotinic acetylcholine receptors in the ground squirrel retina: Localization of the beta 4 subunit by immunohistochemistry and in situ hybridization. Vis. Neurosci. 11, 569–577.
- 103 Gotti, C., Hanke, W., Maury, K., Moretti, M., Ballivet, M., Clementi, F. and Bertrand, D. (1994). Pharmacology and biophysical properties of alpha 7 and alpha 7-alpha 8 alpha-bungarotoxin receptor subtypes immunopurified from the chick optic lobe. Eur. J. Neurosci. 6, 1281–1291.
- 104 Vailati, S., Hanke, W., Bejan, A., Barabino, B., Longhi, R., Balestra, B., Moretti, M., Clementi, F. and Gotti, C. (1999). Functional alpha6-containing nicotinic receptors are present in chick retina. Mol. Pharmacol. 56, 11–19.
- 105 Yeh, J. J., Yasuda, R. P., Davila-Garcia, M. I., Xiao, Y., Ebert, S., Gupta, T., Kellar, K. J. and Wolfe, B. B. (2001). Neuronal nicotinic acetylcholine receptor alpha3 subunit protein in rat brain and sympathetic ganglion measured using a subunit-specific antibody: Regional and ontogenic expression. J. Neurochem. 77, 336–346.
- 106 Lindstrom, J. M. (2000). The structure of neuronal nicotinic receptors. In Handbook of Experimental Pharmacology, F. Clementi, D. Fornasari, and C. Gotti, Eds. Springer-Verlag, Berlin, pp. 101–162.
- 107 Whiting, P. and Lindstrom, J. (1987). Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc. Natl. Acad. Sci. USA 84, 595–599.
- 108 Flores, C. M., Rogers, S. W., Pabreza, L. A., Wolfe, B. B. and Kellar, K. J. (1992). A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is upregulated by chronic nicotine treatment. Mol. Pharmacol. 41, 31–37.
- 109 Flores, C. M., DeCamp, R. M., Kilo, S., Rogers, S. W. and Hargreaves, K. M. (1996). Neuronal nicotinic receptor expression in sensory neurons of the rat trigeminal ganglion: Demonstration of alpha3beta4, a novel subtype in the mammalian nervous system. J. Neurosci. 16, 7892–7901.
- 110 Mao, D., Yasuda, R. P., Fan, H., Wolfe, B. B., and Kellar, K. J., (2006). Heterogeneity of nicotinc receptors in rat superior cervical and nodose ganglia. Mol. Pharmacol. 70, 1693–1699.
- 111 Luetje, C. W. and Patrick, J. (1991). Both alpha- and beta-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J. Neurosci. 11, 837–845.
- 112 Papke, R. L. and Heinemann, S. F. (1994). Partial agonist properties of cytisine on neuronal nicotinic receptors containing the beta 2 subunit. Mol. Pharmacol. 45, 142–149.
- 113 Colquhoun, L. M. and Patrick, J. W. (1997). Alpha3, beta2, and beta4 form heterotrimeric neuronal nicotinic acetylcholine receptors in Xenopus oocytes. J. Neurochem. 69, 2355–2362.
- 114 Badio, B. and Daly, J. W. (1994). Epibatidine, a potent analgestic and nicotinic agonist. Mol. Pharmacol. 45, 563–569.
- 115 Badio, B., Garraffo, H. M., Spande, T. F. and Daly, J. W. (1994). Epibatidine: Discovery and definition as a potent analgesic and nicotinic agonist. Med. Chem. Res. 4, 440–448.
- 116 Spande, T. F., Garraffo, H. M., Edwards, M. W., H. J. C., Y, Pannell, J. and Daly, J. W. (1992). Epibatidine: A novel (chlorophridyl) azabicycloheptane with potent analgesic activity from an Ecuadoran poison frog. J. Am. Chem. Soc. 114, 3475–3478.
- 117 Broka, C. R. (1994). Synthetic approaches to epibatidine. Med. Chem. Res. 4, 449–460.
- 118 Houghtling, R. A., Davila-Garcia, M. I. and Kellar, K. J. (1995). Characterization of (+/−)(−)[3H]epibatidine binding to nicotinic cholinergic receptors in rat and human brain. Mol. Pharmacol. 48, 280–287.
- 119 Houghtling, R. A., Davila-Garcia, M. I., Hurt, S. D. and Kellar, K. J. (1994). [3H]Epibatidine binding to nicotinic cholinergic receptors in brain. Med. Chem. Res. 4, 538–546.
- 120 McKay, J., Lindstrom, J. and Loring, R. H. (1994). Determination of nicotinic receptor subtypes in chick retina using monoclonal antibodies and [3H]-epibatidine. Med. Chem. Res. 4, 528–537.
- 121
Musachio, J. L.,
Villemagne, V. L.,
Scheffel, U.,
Stathis, M.,
Finley, P.,
Horti, A.,
London, E. D. and Dannals, R. F.
(1997).
[125/123I]IPH: A radioiodinated analog of epibatidine for in vivo studies of nicotinic acetylcholine receptors.
Synapse
26,
392–399.
10.1002/(SICI)1098-2396(199708)26:4<392::AID-SYN7>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 122 Davila-Garcia, M. I., Musachio, J. L., Perry, D. C., Xiao, Y., Horti, A., London, E. D., Dannals, R. F. and Kellar, K. J. (1997). [125I]IPH, an epibatidine analog, binds with high affinity to neuronal nicotinic cholinergic receptors. J. Pharmacol. Exp. Ther. 282, 445–451.
- 123 Perry, D. C., Xiao, Y., Nguyen, H. N., Musachio, J. L., Davila-Garcia, M. I. and Kellar, K. J. (2002). Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J. Neurochem. 82, 468–481.
- 124 Parker, M. J., Beck, A. and Luetje, C. W. (1998). Neuronal nicotinic receptor beta2 and beta4 subunits confer large differences in agonist binding affinity. Mol. Pharmacol. 54, 1132–1139.
- 125 Xiao, Y. and Kellar, K. J. (2004). The comparative pharmacology and up-regulation of rat neuronal nicotinic receptor subtype binding sites stably expressed in transfected mammalian cells. J. Pharmacol. Exp. Ther. 310, 98–107.
- 126 Abreo, M. A., Lin, N. H., Garvey, D. S., Gunn, D. E., Hettinger, A. M., Wasicak, J. T., Pavlik, P. A., Martin, Y. C., Donnelly-Roberts, D. L., Anderson, D. J., et al. (1996). Novel 3-pyridyl ethers with subnanomolar affinity for central neuronal nicotinic acetylcholine receptors. J. Med. Chem. 39, 817–825.
- 127 Sullivan, J. P., Donnelly-Roberts, D., Briggs, C. A., Anderson, D. J., Gopalakrishnan, M., Piattoni-Kaplan, M., Campbell, J. E., McKenna, D. G., Molinari, E., Hettinger, A. M., et al. (1996). A-85380 [3-(2(S)-azetidinylmethoxy) pyridine]: In vitro pharmacological properties of a novel, high affinity alpha 4 beta 2 nicotinic acetylcholine receptor ligand. Neuropharmacology 35, 725–734.
- 128 Marks, M. J., Smith, K. W. and Collins, A. C. (1998). Differential agonist inhibition identifies multiple epibatidine binding sites in mouse brain. J. Pharmacol. Exp. Ther. 285, 377–386.
- 129 Whiteaker, P., McIntosh, J. M., Luo, S., Collins, A. C. and Marks, M. J. (2000). 125I-Alpha-conotoxin MII identifies a novel nicotinic acetylcholine receptor population in mouse brain. Mol. Pharmacol. 57, 913–925.
- 130 Hernandez, S. C., Vicini, S., Xiao, Y., Davila-Garcia, M. I., Yasuda, R. P., Wolfe, B. B. and Kellar, K. J. (2004). The nicotinic receptor in the rat pineal gland is an alpha3beta4 subtype. Mol. Pharmacol. 66, 978–987.
- 131 Eaton, J. B., Peng, J. H., Schroeder, K. M., George, A. A., Fryer, J. D., Krishnan, C., Buhlman, L., Kuo, Y. P., Steinlein, O. and Lukas, R. J. (2003). Characterization of human alpha 4 beta 2-nicotinic acetylcholine receptors stably and heterologously expressed in native nicotinic receptor-null SH-EP1 human epithelial cells. Mol. Pharmacol. 64, 1283–1294.
- 132 Boulter, J., Connolly, J., Deneris, E., Goldman, D., Heinemann, S. and Patrick, J. (1987). Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc. Natl. Acad. Sci. USA 84, 7763–7767.
- 133 Papke, R. L., Boulter, J., Patrick, J. and Heinemann, S. (1989). Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. Neuron 3, 589–596.
- 134 Whiting, P., Schoepfer, R., Lindstrom, J. and Priestley, T. (1991). Structural and pharmacological characterization of the major brain nicotinic acetylcholine receptor subtype stably expressed in mouse fibroblasts. Mol. Pharmacol. 40, 463–472.
- 135 Buisson, B., Gopalakrishnan, M., Arneric, S. P., Sullivan, J. P. and Bertrand, D. (1996). Human alpha4beta2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: A patch-clamp study. J. Neurosci. 16, 7880–7891.
- 136 Wang, F., Nelson, M. E., Kuryatov, A., Olale, F., Cooper, J., Keyser, K. and Lindstrom, J. (1998). Chronic nicotine treatment up-regulates human alpha3 beta2 but not alpha3 beta4 acetylcholine receptors stably transfected in human embryonic kidney cells. J. Biol. Chem. 273, 28721–28732.
- 137 Sabey, K., Paradiso, K., Zhang, J. and Steinbach, J. H. (1999). Ligand binding and activation of rat nicotinic alpha4beta2 receptors stably expressed in HEK293 cells. Mol. Pharmacol. 55, 58–66.
- 138 Zhang, J., Xiao, Y., Abdrakhmanova, G., Wang, W., Cleemann, L., Kellar, K.J. and Morad, M. (1999). Activation and Ca2+ permeation of stably transfected alpha3/beta4 neuronal nicotinic acetylcholine receptor. Mol. Pharmacol. 55, 970–981.
- 139 Paradiso, K. G. and Steinbach, J. H. (2003). Nicotine is highly effective at producing desensitization of rat alpha4beta2 neuronal nicotinic receptors. J. Physiol. 553, 857–871.
- 140 Gopalakrishnan, M., Monteggia, L. M., Anderson, D. J., Molinari, E. J., Piattoni-Kaplan, M., Donnelly-Roberts, D., Arneric, S. P. and Sullivan, J. P. (1996). Stable expression, pharmacologic properties and regulation of the human neuronal nicotinic acetylcholine alpha 4 beta 2 receptor. J. Pharmacol. Exp. Ther. 276, 289–297.
- 141 Xiao, Y., Meyer, E. L., Thompson, J. M., Surin, A., Wroblewski, J. and Kellar, K. J. (1998). Rat alpha3/beta4 subtype of neuronal nicotinic acetylcholine receptor stably expressed in a transfected cell line: Pharmacology of ligand binding and function. Mol. Pharmacol. 54, 322–333.
- 142 Meyer, E. L., Xiao, Y. and Kellar, K. J. (2001). Agonist regulation of rat alpha 3 beta 4 nicotinic acetylcholine receptors stably expressed in human embryonic kidney 293 cells. Mol. Pharmacol. 60, 568–576.
- 143 Fitch, R. W., Xiao, Y., Kellar, K. J. and Daly, J. W. (2003). Membrane potential fluorescence: A rapid and highly sensitive assay for nicotinic receptor channel function. Proc. Natl. Acad. Sci. USA 100, 4909–4914.
- 144 Kuryatov, A., Luo, J., Cooper, J. and Lindstrom, J. (2005). Nicotine acts as a pharmacological chaperone to up-regulate human alpha4beta2 acetylcholine receptors. Mol. Pharmacol. 68, 1839–1851.
- 145 Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M., Fuxe, K. and Changeux, J. P. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391, 173–177.
- 146 Tapper, A. R., McKinney, S. L., Nashmi, R., Schwarz, J., Deshpande, P., Labarca, C., Whiteaker, P., Marks, M. J., Collins, A. C. and Lester, H. A. (2004). Nicotine activation of alpha4* receptors: Sufficient for reward, tolerance, and sensitization. Science 306, 1029–1032.
- 147 Maskos, U., Molles, B. E., Pons, S., Besson, M., Guiard, B. P., Guilloux, J. P., Evrard, A., Cazala, P., Cormier, A., Mameli-Engvall, M., et al. (2005). Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436, 103–107.
- 148 Quick, M. W., Ceballos, R. M., Kasten, M., McIntosh, J. M. and Lester, R. A. (1999). Alpha3beta4 subunit-containing nicotinic receptors dominate function in rat medial habenula neurons. Neuropharmacology 38, 769–783.
- 149 Chiappinelli, V. A. (1983). Kappa-bungarotoxin: A probe for the neuronal nicotinic receptor in the avian ciliary ganglion. Brain Res. 277, 9–22.
- 150 Loring, R. H., Chiappinelli, V. A., Zigmond, R. E. and Cohen, J. B. (1984). Characterization of a snake venom neurotoxin which blocks nicotinic transmission in the avian ciliary ganglion. Neuroscience 11, 989–999.
- 151 Luetje, C. W., Wada, K., Rogers, S., Abramson, S. N., Tsuji, K., Heinemann, S. and Patrick, J. (1990). Neurotoxins distinguish between different neuronal nicotinic acetylcholine receptor subunit combinations. J. Neurochem. 55, 632–640.
- 152 Del Signore, A., Gotti, C., Rizzo, A., Moretti, M. and Paggi, P. (2004). Nicotinic acetylcholine receptor subtypes in the rat sympathetic ganglion: Pharmacological characterization, subcellular distribution and effect of pre- and postganglionic nerve crush. J. Neuropathol. Exp. Neurol. 63, 138–150.
- 153 Wang, F., Gerzanich, V., Wells, G. B., Anand, R., Peng, X., Keyser, K. and Lindstrom, J. (1996). Assembly of human neuronal nicotinic receptor alpha5 subunits with alpha3, beta2, and beta4 subunits. J. Biol. Chem. 271, 17656–17665.
- 154 Yu, C. R. and Role, L. W. (1998). Functional contribution of the alpha5 subunit to neuronal nicotinic channels expressed by chick sympathetic ganglion neurones. J. Physiol. 509(Pt. 3), 667–681.
- 155 Gerzanich, V., Wang, F., Kuryatov, A. and Lindstrom, J. (1998). Alpha 5 subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal alpha 3 nicotinic receptors. J. Pharmacol. Exp. Ther. 286, 311–320.
- 156 Fischer, H., Orr-Urtreger, A., Role, L. W. and Huck, S. (2005). Selective deletion of the alpha5 subunit differentially affects somatic-dendritic versus axonally targeted nicotinic ACh receptors in mouse. J. Physiol. 563, 119–137.
- 157 Perry, D. C., Mao, D., Keller, A. B., and Kellar, K. J., (2005). Differential effects of chronic nicotine on upregulation of nicotinic receptor subunits in rat brain (Abstract). In SFN 35th Annual Meeting. Society for Neuroscience, Washington, DC.
- 158 Le Novere, N., Zoli, M. and Changeux, J. P. (1996). Neuronal nicotinic receptor alpha 6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur. J. Neurosci. 8, 2428–2439.
- 159 Fucile, S., Matter, J. M., Erkman, L., Ragozzino, D., Barabino, B., Grassi, F., Alema, S., Ballivet, M. and Eusebi, F. (1998). The neuronal alpha6 subunit forms functional heteromeric acetylcholine receptors in human transfected cells. Eur. J. Neurosci. 10, 172–178.
- 160 McIntosh, J. M., Santos, A. D. and Olivera, B. M. (1999). Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. Annu. Rev. Biochem. 68, 59–88.
- 161 Cartier, G. E., Yoshikami, D., Gray, W. R., Luo, S., Olivera, B. M. and McIntosh, J. M. (1996). A new alpha-conotoxin which targets alpha3beta2 nicotinic acetylcholine receptors. J. Biol. Chem. 271, 7522–7528.
- 162 Champtiaux, N., Han, Z. Y., Bessis, A., Rossi, F. M., Zoli, M., Marubio, L., McIntosh, J. M. and Changeux, J. P. (2002). Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J. Neurosci. 22, 1208–1217.
- 163 Kulak, J. M., Nguyen, T. A., Olivera, B. M. and McIntosh, J. M. (1997). Alpha-conotoxin MII blocks nicotine-stimulated dopamine release in rat striatal synaptosomes. J. Neurosci. 17, 5263–5270.
- 164 Kaiser, S. A., Soliakov, L., Harvey, S. C., Luetje, C. W. and Wonnacott, S. (1998). Differential inhibition by alpha-conotoxin-MII of the nicotinic stimulation of [3H]dopamine release from rat striatal synaptosomes and slices. J. Neurochem. 70, 1069–1076.
- 165 Cui, C., Booker, T. K., Allen, R. S., Grady, S. R., Whiteaker, P., Marks, M. J., Salminen, O., Tritto, T., Butt, C. M., Allen, W. R., et al. (2003). The beta3 nicotinic receptor subunit: A component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. J. Neurosci. 23, 11045–11053.
- 166 Salminen, O., Murphy, K. L., McIntosh, J. M., Drago, J., Marks, M. J., Collins, A. C. and Grady, S. R. (2004). Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol. Pharmacol. 65, 1526–1535.
- 167 Quik, M., Polonskaya, Y., Kulak, J. M. and McIntosh, J. M. (2001). Vulnerability of 125I-alpha-conotoxin MII binding sites to nigrostriatal damage in monkey. J. Neurosci. 21, 5494–5500.
- 168 Kulak, J. M., McIntosh, J. M. and Quik, M. (2002). Loss of nicotinic receptors in monkey striatum after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment is due to a decline in alpha-conotoxin MII sites. Mol. Pharmacol. 61, 230–238.
- 169 Champtiaux, N., Gotti, C., Cordero-Erausquin, M., David, D. J., Przybylski, C., Lena, C., Clementi, F., Moretti, M., Rossi, F. M., Le Novere, N., et al. (2003). Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J. Neurosci. 23, 7820–7829.
- 170 Salminen, O. S., Grady, S. R., Collins, A. C., McIntosh, J. M., and Marks, M. J. (2004). Chronic nicotine infusion downregulates alpha-conotoxin mII sensitive nicotinic acetylcholine receptors in C57BL/6 mice (abstract). In SFN 34th Annual Meeting. Society for Neuroscience, San Diego.
- 171 McCallum, S. E., Parameswaran, N., Bordia, T., McIntosh, J. M., Grady, S. R. and Quik, M. (2005). Decrease in alpha3*/alpha6* nicotinic receptors but not nicotine-evoked dopamine release in monkey brain after nigrostriatal damage. Mol. Pharmacol. 68, 737–746.
- 172 Luo, S., Kulak, J. M., Cartier, G. E., Jacobsen, R. B., Yoshikami, D., Olivera, B. M. and McIntosh, J. M. (1998). Alpha-conotoxin AuIB selectively blocks alpha3 beta4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release. J. Neurosci. 18, 8571–8579.
- 173 Clarke, P. B. and Reuben, M. (1996). Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: Mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. Br. J. Pharmacol. 117, 595–606.
- 174 Fu, Y., Matta, S. G., McIntosh, J. M. and Sharp, B. M. (1999). Inhibition of nicotine-induced hippocampal norepinephrine release in rats by alpha-conotoxins MII and AuIB microinjected into the locus coeruleus. Neurosci. Lett. 266, 113–116.
- 175 Corrigall, W. A., Coen, K. M. and Adamson, K. L. (1994). Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res. 653, 278–284.
- 176 Nisell, M., Nomikos, G. G. and Svensson, T. H. (1994). Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16, 36–44.
- 177 Mukhin, A. G., Gundisch, D., Horti, A. G., Koren, A. O., Tamagnan, G., Kimes, A. S., Chambers, J., Vaupel, D. B., King, S. L., Picciotto, M. R., et al. (2000). 5-Iodo-A-85380, an alpha4beta2 subtype-selective ligand for nicotinic acetylcholine receptors. Mol. Pharmacol. 57, 642–649.
- 178 Katz, B. and Thesleff, S. (1957). A study of the desensitization produced by acetylcholine at the motor end-plate. J. Physiol. 138, 63–80.
- 179 Boyd, N. D. (1987). Two distinct kinetic phases of desensitization of acetylcholine receptors of clonal rat PC12 cells. J. Physiol. 389, 45–67.
- 180 Marks, M. J., Grady, S. R., Yang, J. M., Lippiello, P. M. and Collins, A. C. (1994). Desensitization of nicotine-stimulated 86Rb+ efflux from mouse brain synaptosomes. J. Neurochem. 63, 2125–2135.
- 181 Rowell, P. P. and Hillebrand, J. A. (1994). Characterization of nicotine-induced desensitization of evoked dopamine release from rat striatal synaptosomes. J. Neurochem. 63, 561–569.
- 182 Lester, R. A. and Dani, J. A. (1995). Acetylcholine receptor desensitization induced by nicotine in rat medial habenula neurons. J. Neurophysiol. 74, 195–206.
- 183 Fenster, C. P., Rains, M. F., Noerager, B., Quick, M. W. and Lester, R. A. (1997). Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine. J. Neurosci. 17, 5747–5759.
- 184 Hulihan-Giblin, B. A., Lumpkin, M. D. and Kellar, K. J. (1990). Effects of chronic administration of nicotine on prolactin release in the rat: Inactivation of prolactin response by repeated injections of nicotine. J. Pharmacol. Exp. Ther. 252, 21–25.
- 185 Hulihan-Giblin, B. A., Lumpkin, M. D. and Kellar, K. J. (1990). Acute effects of nicotine on prolactin release in the rat: Agonist and antagonist effects of a single injection of nicotine. J. Pharmacol. Exp. Ther. 252, 15–20.
- 186 Papke, R. L. and Heinemann, S. F. (1991). The role of the beta 4-subunit in determining the kinetic properties of rat neuronal nicotinic acetylcholine alpha 3-receptors. J. Physiol. 440, 95–112.
- 187 Cachelin, A. B. and Jaggi, R. (1991). Beta subunits determine the time course of desensitization in rat alpha 3 neuronal nicotinic acetylcholine receptors. Pflugers Arch. 419, 579–582.
- 188 Gross, A., Ballivet, M., Rungger, D. and Bertrand, D. (1991). Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes: Role of the alpha subunit in agonist sensitivity and desensitization. Pflugers Arch. 419, 545–551.
- 189 Ke, L., Eisenhour, C. M., Bencherif, M. and Lukas, R. J. (1998). Effects of chronic nicotine treatment on expression of diverse nicotinic acetylcholine receptor subtypes. I. Dose- and time-dependent effects of nicotine treatment. J. Pharmacol. Exp. Ther. 286, 825–840.
- 190 Gentry, C. L., Wilkins, L. H. Jr., and Lukas, R. J. (2003). Effects of prolonged nicotinic ligand exposure on function of heterologously expressed, human alpha4beta2- and alpha4beta4-nicotinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 304, 206–216.
- 191 Rowell, P. P. and Li, M. (1997). Dose-response relationship for nicotine-induced up-regulation of rat brain nicotinic receptors. J. Neurochem. 68, 1982–1989.
- 192 Sharp, B. M. and Beyer, H. S. (1986). Rapid desensitization of the acute stimulatory effects of nicotine on rat plasma adrenocorticotropin and prolactin. J. Pharmacol. Exp. Ther. 238, 486–491.
- 193 Jia, L., Flotildes, K., Li, M. and Cohen, B. N. (2003). Nicotine trapping causes the persistent desensitization of alpha4beta2 nicotinic receptors expressed in oocytes. J. Neurochem. 84, 753–766.
- 194 Benowitz, N. L., Porchet, H. and Jacobs, P. (1990). Pharmacokinetics, metabloism and pharmacodynamics of nicotine In: Nicotine Psychopharmacology Molecular, Cellular and Behavioural Aspects. S. Wonnacott, M. A. H. Russell, and I. P. Stoleman, Eds. Oxford University Press, New York, pp. 112–157
- 195 Ghosheh, O. A., Dwoskin, L. P., Miller, D. K. and Crooks, P. A. (2001). Accumulation of nicotine and its metabolites in rat brain after intermittent or continuous peripheral administration of [2′-(14)C]nicotine. Drug Metab. Dispos. 29, 645–651.
- 196 Aoshima, H. (1984). A second, slower inactivation process in acetylcholine receptor-rich membrane vesicles prepared from Electrophorus electricus. Arch. Biochem. Biophys. 235, 312–318.
- 197 Simasko, S. M., Soares, J. R. and Weiland, G. A. (1986). Two components of carbamylcholine-induced loss of nicotinic acetylcholine receptor function in the neuronal cell line PC12. Mol. Pharmacol. 30, 6–12.
- 198 Lukas, R. J. (1991). Effects of chronic nicotinic ligand exposure on functional activity of nicotinic acetylcholine receptors expressed by cells of the PC12 rat pheochromocytoma or the TE671/RD human clonal line. J. Neurochem. 56, 1134–1145.
- 199 Rowell, P. P. and Duggan, D. S. (1998). Long-lasting inactivation of nicotinic receptor function in vitro by treatment with high concentrations of nicotine. Neuropharmacology 37, 103–111.
- 200 Hsu, Y. N., Amin, J., Weiss, D. S. and Wecker, L. (1996). Sustained nicotine exposure differentially affects alpha 3 beta 2 and alpha 4 beta 2 neuronal nicotinic receptors expressed in Xenopus oocytes. J. Neurochem. 66, 667–675.
- 201 Olale, F., Gerzanich, V., Kuryatov, A., Wang, F. and Lindstrom, J. (1997). Chronic nicotine exposure differentially affects the function of human alpha3, alpha4, and alpha7 neuronal nicotinic receptor subtypes. J. Pharmacol. Exp. Ther. 283, 675–683.
- 202 Kuryatov, A., Olale, F. A., Choi, C. and Lindstrom, J. (2000). Acetylcholine receptor extracellular domain determines sensitivity to nicotine-induced inactivation. Eur. J. Pharmacol. 393, 11–21.
- 203 Schwartz, R. D. and Kellar, K. J. (1983). Nicotinic cholinergic receptor binding sites in the brain: Regulation in vivo. Science 220, 214–216.
- 204 Marks, M. J., Burch, J. B. and Collins, A. C. (1983). Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J. Pharmacol. Exp. Ther. 226, 817–825.
- 205 Nordberg, A., Wahlstrom, G., Arnelo, U. and Larsson, C. (1985). Effect of long-term nicotine treatment on [3H]nicotine binding sites in the rats brain. Drug Alcohol. Depend. 16, 9–17.
- 206 Peng, X., Gerzanich, V., Anand, R., Whiting, P. J. and Lindstrom, J. (1994). Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol. Pharmacol. 46, 523–530.
- 207 Peng, X., Gerzanich, V., Anand, R., Wang, F. and Lindstrom, J. (1997). Chronic nicotine treatment up-regulates alpha3 and alpha7 acetylcholine receptor subtypes expressed by the human neuroblastoma cell line SH-SY5Y. Mol. Pharmacol. 51, 776–784.
- 208 Avila, A. M., Dávila-García, M. I., Ascarrunz, V. S., Xiao, Y. and Kellar, K. J. (2003). Differential regulation of nicotinic acetylcholine receptors in PC12 cells by nicotine and nerve growth factor. Mol. Pharmacol. 64, 974–986.
- 209 Benwell, M. E., Balfour, D. J. and Anderson, J. M. (1988). Evidence that tobacco smoking increases the density of (−)-[3H]nicotine binding sites in human brain. J. Neurochem. 50, 1243–1247.
- 210 Breese, C. R., Marks, M. J., Logel, J., Adams, C. E., Sullivan, B., Collins, A. C. and Leonard, S. (1997). Effect of smoking history on [3H]nicotine binding in human postmortem brain. J. Pharmacol. Exp. Ther. 282, 7–13.
- 211 Perry, D. C., Dávila-García, M. I., Stockmeier, C. A. and Kellar, K. J. (1999). Increased nicotinic receptors in brains from smokers: Membrane binding and autoradiography studies. J. Pharmacol. Exp. Ther. 289, 1545–1552.
- 212 Flores, C. M., Dávila-García, M. I., Ulrich, Y. M. and Kellar, K. J. (1997). Differential regulation of neuronal nicotinic receptor binding sites following chronic nicotine administration. J. Neurochem. 69, 2216–2219.
- 213 Dávila-García, M. I., Musachio, J. L. and Kellar, K. J. (2003). Chronic nicotine administration does not increase nicotinic receptors labeled by [125I]epibatidine in adrenal gland, superior cervical ganglia, pineal or retina. J. Neurochem. 85, 1237–1246.
- 214 Sallette, J., Bohler, S., Benoit, P., Soudant, M., Pons, S., Le Novere, N., Changeux, J. P. and Corringer, P. J. (2004). An extracellular protein microdomain controls up-regulation of neuronal nicotinic acetylcholine receptors by nicotine. J. Biol. Chem. 279, 18767–18775.
- 215 Kellar, K. J., Giblin, B. A. and Lumpkin, M. D. (1989). Regulation of brain nicotinic cholinergic recognition sites and prolactin release by nicotine. Prog. Brain Res. 79, 209–216.
- 216 Marks, M. J., Pauly, J. R., Gross, S. D., Deneris, E. S., Hermans-Borgmeyer, I., Heinemann, S. F. and Collins, A. C. (1992). Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J. Neurosci. 12, 2765–2784.
- 217 Nguyen, H. N., Rasmussen, B. A. and Perry, D. C. (2003). Subtype-selective up-regulation by chronic nicotine of high-affinity nicotinic receptors in rat brain demonstrated by receptor autoradiography. J. Pharmacol. Exp. Ther. 307, 1090–1097.
- 218 Parker, S. L., Fu, Y., McAllen, K., Luo, J., McIntosh, J. M., Lindstrom, J. M. and Sharp, B. M. (2004). Up-regulation of brain nicotinic acetylcholine receptors in the rat during long-term self-administration of nicotine: Disproportionate increase of the alpha6 subunit. Mol. Pharmacol. 65, 611–622.
- 219 Lai, A., Parameswaran, N., Khwaja, M., Whiteaker, P., Lindstrom, J. M., Fan, H., McIntosh, J. M., Grady, S. R. and Quik, M. (2005). Long-term nicotine treatment decreases striatal alpha 6* nicotinic acetylcholine receptor sites and function in mice. Mol. Pharmacol. 67, 1639–1647.
- 220 Mugnaini, M., Garzotti, M., Sartori, I., Pilla, M., Repeto, P., Heidbreder, C. A., and and Tessari, M., (2006). Selective down-regulation of [125I]Y0-alpha-conotoxin MII binding in rat mesostriatal dopamine pathway following continuous infusion of nicotine. Neuroscience. 137, 565–572.
- 221 Buisson, B. and Bertrand, D. (2001). Chronic exposure to nicotine upregulates the human (alpha)4(beta)2 nicotinic acetylcholine receptor function. J. Neurosci. 21, 1819–1829.
- 222 Eilers, H., Schaeffer, E., Bickler, P. E. and Forsayeth, J. R. (1997). Functional deactivation of the major neuronal nicotinic receptor caused by nicotine and a protein kinase C-dependent mechanism. Mol. Pharmacol. 52, 1105–1112.
- 223 Rowell, P. P. and Wonnacott, S. (1990). Evidence for functional activity of up-regulated nicotine binding sites in rat striatal synaptosomes. J. Neurochem. 55, 2105–2110.
- 224 Yu, Z. J. and Wecker, L. (1994). Chronic nicotine administration differentially affects neurotransmitter release from rat striatal slices. J. Neurochem. 63, 186–194.
- 225 Nguyen, H. N., Rasmussen, B. A. and Perry, D. C. (2004). Binding and functional activity of nicotinic cholinergic receptors in selected rat brain regions are increased following long-term but not short-term nicotine treatment. J. Neurochem. 90, 40–49.
- 226 Grilli, M., Parodi, M., Raiteri, M. and Marchi, M. (2005). Chronic nicotine differentially affects the function of nicotinic receptor subtypes regulating neurotransmitter release. J. Neurochem. 93, 1353–1360.
- 227 Lapchak, P. A., Araujo, D. M., Quirion, R. and Collier, B. (1989). Effect of chronic nicotine treatment on nicotinic autoreceptor function and N-[3H]methylcarbamylcholine binding sites in the rat brain. J. Neurochem. 52, 483–491.
- 228 Marks, M. J., Grady, S. R. and Collins, A. C. (1993). Downregulation of nicotinic receptor function after chronic nicotine infusion. J. Pharmacol. Exp. Ther. 266, 1268–1276.
- 229 Grady, S. R., Grun, E. U., Marks, M. J. and Collins, A. C. (1997). Pharmacological comparison of transient and persistent [3H]dopamine release from mouse striatal synaptosomes and response to chronic l-nicotine treatment. J. Pharmacol. Exp. Ther. 282, 32–43.
- 230 Bencherif, M., Fowler, K., Lukas, R. J. and Lippiello, P. M. (1995). Mechanisms of up-regulation of neuronal nicotinic acetylcholine receptors in clonal cell lines and primary cultures of fetal rat brain. J. Pharmacol. Exp. Ther. 275, 987–994.
- 231 Buisson, B. and Bertrand, D. (2002). Nicotine addiction: The possible role of functional upregulation. Trends Pharmacol. Sci. 23, 130–136.
- 232 Nashmi, R., Dickinson, M. E., McKinney, S., Jareb, M., Labarca, C., Fraser, S. E. and Lester, H. A. (2003). Assembly of alpha4beta2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: Effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J. Neurosci. 23, 11554–11567.
- 233 Sallette, J., Pons, S., Devillers-Thiery, A., Soudant, M., Prado de Carvalho, L., Changeux, J. P. and Corringer, P. J. (2005). Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron 46, 595–607.
- 234 Harkness, P. C. and Millar, N. S. (2002). Changes in conformation and subcellular distribution of alpha4beta2 nicotinic acetylcholine receptors revealed by chronic nicotine treatment and expression of subunit chimeras. J. Neurosci. 22, 10172–10181.
- 235 Vallejo, Y. F., Buisson, B., Bertrand, D. and Green, W. N. (2005). Chronic nicotine exposure upregulates nicotinic receptors by a novel mechanism. J. Neurosci. 25, 5563–5572.