Repeated Measures Analyses
Abstract
Repeated measures data arise when multiple measurements of response variables and/or covariates are obtained in sequence from each experimental unit and occur frequently in many disciplines. The repeated measures design provides opportunities for investigators to examine the pattern of response variable under different measurement occasions, to understand the relationship between repeated outcomes and covariates, and to discern the dependence pattern among the repeated measurements. A special feature of repeated measures data is that measurements from the same unit are usually positively correlated; thus, valid and effective analysis of repeated measures must deal with this within-subject correlation. In this article, we review some of the analysis methods for repeated measures, which include univariate summary methods, multivariate analysis of variance, parametric random-effects methods, marginal generalized estimation equation methods, and modern semiparametric and nonparametric approaches. Some simple methods for data exploration and graphical display are demonstrated using real data examples. We also briefly discuss related computational tools and statistical packages.
References
- 1 Singer, J.D. & Willett, J.B. (2003). Applied Longitudinal Data Analysis : Modeling Change and Event Occurrence, Oxford University Press, Oxford.
- 2 Everitt, B.S. (1995). The analysis of repeated-measures—a practical review with examples, Statistician 44(1), 113–135.
- 3 Gulati, R. (1995). Social structure and alliance formation patterns: a longitudinal analysis, Administrative Science Quarterly 40(4), 619–652.
- 4
Albert, P.S.
(1999).
Longitudinal data analysis (repeated measures) in clinical trials,
Statistics in Medicine
18(13),
1707–1732.
10.1002/(SICI)1097-0258(19990715)18:13<1707::AID-SIM138>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 5 McNeil, A.J., Frey, R. & Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques and Tools, Princeton Series in Finance, Princeton University Press, Princeton.
- 6 Ding, C.G., Woo, Y.Y., Sheu, H.J., Chien, H.C. & Shen, S.F. (1996). An effective statistical approach for comparative risk assessment, Risk Analysis 16(3), 411–419.
- 7 Vachon, C.M., Pankratz, V.S., Scott, C.G., Maloney, S.D., Ghosh, K., Brandt, K.R., Milanese, T., Carston, M.J. & Sellers, T.A. (2007). Longitudinal trends in mammographic percent density and breast cancer risk, Cancer Epidemiology, Biomarkers and Prevention 16(5), 921–928.
- 8
Little, R.J.A. &
Rubin, D.B.
(2002).
Statistical Analysis with Missing Data,
Wiley Series in Probability and Statistics,
2nd Edition,
John Wiley & Sons,
New York.
10.1002/9781119013563 Google Scholar
- 9 Crowder, M.J. & Hand, D.J. (1990). Analysis of Repeated Measures, Monographs on Statistics and Applied Probability 41, 1st Edition, Chapman & Hall, London.
- 10 Lindsey, J.K. (1993). Models for Repeated Measurements, Oxford Statistical Science Series 10, Clarendon Press, Oxford University Press, Oxford.
- 11 Diggle, P., Heagerty, P.J., Liang, K.-Y. & Zeger, S.L. (2002). Analysis of Longitudinal Data, Oxford Statistical Science Series 25, 2nd Edition, Clarendon Press; Oxford University Press, Oxford.
- 12 Davis, C.S. (2002). Statistical Methods for the Analysis of Repeated Measurements, Springer Texts in Statistics, Springer, New York.
- 13
Ruppert, D.,
Wand, M.P. &
Carroll, R.J.
(2003).
Semiparametric Regression,
Cambridge University Press,
Cambridge.
10.1017/CBO9780511755453 Google Scholar
- 14 Fitzmaurice, G.M., Laird, N.M. & Ware, J.H. (2004). Applied Longitudinal Analysis, Wiley Series in Probability and Statistics, Wiley-Interscience, Hoboken.
- 15 Crepeau, H., Koziol, J., Reid, N. & Yuh, Y.S. (1985). Analysis of incomplete multivariate data from repeated measurement experiments, Biometrics 41(2), 505–514.
- 16 Fitzmaurice, G.M. & Lipsitz, S.R. (1995). A model for binary time-series data with serial odds ratio patterns, Journal of the Royal Statistical Society, Series C: Applied Statistics 44(1), 51–61.
- 17 Matthews, J.N., Altman, D.G., Campbell, M.J. & Royston, P. (1990). Analysis of serial measurements in medical research, British Medical Journal 300(6719), 230–235.
- 18 Rao, C.R. (1965). Theory of least squares when parameters are stochastic and its application to analysis of growth curves, Biometrika 52, 447–458.
- 19 Potthoff, R.F. & Roy, S.N. (1964). Generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika 51(3–4), 313–326.
- 20 Ashby, M., Neuhaus, J.M., Hauck, W.W., Bacchetti, P., Heilbron, D.C., Jewell, N.P., Segal, M.R. & Fusaro, R.E. (1992). An annotated bibliography of methods for analysing correlated categorical data, Statistics in Medicine 11(1), 67–99.
- 21 Laird, N.M. & Ware, J.H. (1982). Random-effects models for longitudinal data, Biometrics 38(4), 963–974.
- 22 Ware, J.H. (1985). Linear-models for the analysis of longitudinal-studies, American Statistician 39(2), 95–101.
- 23 Mclean, R.A., Sanders, W.L. & Stroup, W.W. (1991). A unified approach to mixed linear-models, American Statistician 45(1), 54–64.
- 24 Jennrich, R.I. & Schluchter, M.D. (1986). Unbalanced repeated-measures models with structured covariance matrices, Biometrics 42(4), 805–820.
- 25 Breslow, N.E. & Clayton, D.G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association 88(421), 9–25.
- 26 Liang, K.Y. & Zeger, S.L. (1986). Longitudinal data-analysis using generalized linear-models, Biometrika 73(1), 13–22.
- 27 Zhao, L.P. & Prentice, R.L. (1990). Correlated binary regression using a quadratic exponential model, Biometrika 77(3), 642–648.
- 28 Fitzmaurice, G.M. & Laird, N.M. (1993). A likelihood-based method for analyzing longitudinal binary responses, Biometrika 80(1), 141–151.
- 29 Molenberghs, G. & Lesaffre, E. (1994). Marginal modeling of correlated ordinal data using a multivariate Plackett distribution, Journal of the American Statistical Association 89(426), 633–644.
- 30 Heagerty, P.J. & Zeger, S.L. (1996). Marginal regression models for clustered ordinal measurements, Journal of the American Statistical Association 91(435), 1024–1036.
- 31 Heagerty, P.J. (1999). Marginally specified logistic-normal models for longitudinal binary data, Biometrics 55(3), 688–698.
- 32 Heagerty, P.J. & Zeger, S.L. (2000). Marginalized multilevel models and likelihood inference, Statistical Science 15(1), 1–19.
- 33 Heagerty, P.J. & Kurland, B.F. (2001). Misspecified maximum likelihood estimates and generalised linear mixed models, Biometrika 88(4), 973–985.
- 34 Lin, D.Y. & Ying, Z. (2001). Semiparametric and nonparametric regression analysis of longitudinal data, Journal of the American Statistical Association 96(1), 103–113.
- 35 Lin, D.Y., Wei, L.J., Yang, I. & Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events, Journal of the Royal Statistical Society, Series B: Statistical Methodology 62, 711–730.
- 36 Lin, X.H. & Carroll, R.J. (2001). Semiparametric regression for clustered data, Biometrika 88(4), 1179–1185.
- 37 Lin, X.H. & Carroll, R.J. (2001). Semiparametric regression for clustered data using generalized estimating equations, Journal of the American Statistical Association 96(455), 1045–1056.
- 38 Wang, N., Carroll, R.J. & Lin, X.H. (2005). Efficient semiparametric marginal estimation for longitudinal/clustered data, Journal of the American Statistical Association 100(469), 147–157.
- 39 Tsay, R.S. (1984). Regression-models with time-series errors, Journal of the American Statistical Association 79(385), 118–124.
- 40 Korn, E.L. & Whittemore, A.S. (1979). Methods for analyzing panel studies of acute health-effects of air-pollution, Biometrics 35(4), 795–802.
- 41 Zeger, S.L., Liang, K.Y. & Self, S.G. (1985). The analysis of binary longitudinal data with time-independent covariates, Biometrika 72(1), 31–38.
- 42 Zeger, S.L. & Qaqish, B. (1988). Markov regression-models for time-series—a quasi-likelihood approach, Biometrics 44(4), 1019–1031.
- 43 Diggle, P.J. (1989). Testing for random dropouts in repeated measurement data, Biometrika 45(4), 1255–1258.
- 44 Chen, H.Y. & Little, R. (1999). A test of missing completely at random for generalised estimating equations with missing data, Biometrika 86(1), 1–13.
- 45 Diggle, P. & Kenward, M.G. (1994). Informative drop-out in longitudinal data-analysis, Applied Statistics-Journal of the Royal Statistical Society, Series C 43(1), 49–93.
- 46 Baker, S.G. (1995). Marginal regression for repeated binary data with outcome subject to non-ignorable nonresponse, Biometrics 51(3), 1042–1052.
- 47 Fitzmaurice, G.M., Laird, N.M. & Zahner, G.E.P. (1996). Multivariate logistic models for incomplete binary responses, Journal of the American Statistical Association 91(433), 99–108.
- 48 Little, R.J.A. (1993). Pattern-mixture models for multivariate incomplete data, Journal of the American Statistical Association 88(421), 125–134.
- 49 Little, R.J.A. (1994). A class of pattern-mixture models for normal incomplete data, Biometrika 81(3), 471–483.
- 50
Hogan, J.W. &
Laird, N.M.
(1997).
Mixture models for the joint distribution of repeated measures and event times,
Statistics in Medicine
16(1–3),
239–257.
10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 51 Wu, M.C. & Carroll, R.J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process, Biometrics 44(1), 175–188.
- 52 Schluchter, M.D. (1992). Methods for the analysis of informatively censored longitudinal data, Statistics in Medicine 11(14–15), 1861–1870.
- 53 Wulfsohn, M.S. & Tsiatis, A.A. (1997). A joint model for survival and longitudinal data measured with error, Biometrics 53(1), 330–339.
- 54 Kenward, M.G. & Molenberghs, G. (1999). Parametric models for incomplete continuous and categorical longitudinal data, Statistical Methods in Medical Research 8(1), 51–83.
- 55 Hogan, J.W., Roy, J. & Korkontzelou, C. (2004). Handling drop-out in longitudinal studies, Statistics in Medicine 23(9), 1455–1497.
- 56
Everitt, B. &
Hothorn, T.
(2006).
A Handbook of Statistical Analyses Using R,
Chapman & Hall/CRC,
Boca Raton.
10.1046/j.1365-2699.1998.252166.x Google Scholar
- 57 Pinheiro, J.C. & Bates, D.M. (2000). Mixed-Effects Models in S and S-PLUS, Statistics and Computing, Springer, New York.
Encyclopedia of Quantitative Risk Analysis and Assessment
Browse other articles of this reference work: