Abstract
Linkage analysis is an important initial step in localizing and identifying genes in the chromosomes that underlie many human diseases and other traits of interest. Frequently, linkage analysis proceeds by comparing the inheritance pattern of the trait and that of the genetic markers to establish linkage between the trait and marker loci. This article provides a brief overview of commonly used methods for linkage analysis, which include model-free and model-based methods for mapping qualitative- and quantitative-trait loci. Issues on the design of linkage studies are also briefly discussed.
References
- 1
Ott, J.
(1999).
Analysis of Human Genetic Linkage,
3rd Edition,
Johns Hopkins University Press.
10.56021/9780801861406 Google Scholar
- 2 Lander, E.S. & Schork, N.J. (1994). Genetic dissection of complex traits, Science 265, 2037–2048.
- 3 Morton, N.E. (1955). Sequential tests for the detection of linkage, American Journal of Human Genetics 7, 277–318.
- 4 Elston, R.C. (1998). Methods of linkage analysis - and the assumptions underlying them, American Journal of Human Genetics 63, 931–934.
- 5
Hodge, S.E.
(2001).
Model-free vs. model-based linkage analysis: a false dichotomy?
American Journal of Medical Genetics
105,
62–64.
10.1002/1096-8628(20010108)105:1<62::AID-AJMG1063>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 6 Lander, E.S. & Kruglyak, L. (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results, Nature Genetics 11, 241–247.
- 7 Terwilliger, J.D. & Ott, J. (1994). Handbook of Human Genetic Linkage, Johns Hopkins University Press.
- 8 Smith, C. (1963). Testing for heterogeneity of recombination fraction value in human genetics, Annals of Human Genetics 27, 175–181.
- 9 Abreu, P., Hodge, S.E. & Greenberg, D.A. (2002). Quantification of type I error probabilities for heterogeneity lod scores, Genetic Epidemiology 22, 156–169.
- 10 Liu, X. & Shao, Y. (2003). Asymptotics for likelihood ratio test under loss of identifiability, Annals of Statistics 31, 807–832.
- 11 Haseman, J.K. & Elston, R.C. (1972). The investigation of linkage between a quantitative trait and a marker locus, Behavior Genetics 2, 3–19.
- 12 Amos, C., Dawson, D.V. & Elston, R.C. (1990). The probabilistic determination of identity-by-descent sharing for pairs of relatives from pedigrees, American Journal of Human Genetics 47, 842–853.
- 13 Hodge, S.E. (1984). The information contained in multiple sibling pairs, Genetic Epidemiology 1, 109–122.
- 14 Blackwelder, W.C. & Elston, R.C. (1985). A comparison of sib-pair linkage tests for disease susceptibility loci, Genetic Epidemiology 2, 85–97.
- 15 Kruglyak, L. & Lander, E.S. (1995). Complete multipoint sib pair analysis of qualitative and quantitative traits, American Journal of Human Genetics 57, 439–454.
- 16 Elston, R.C. & Stewart, J. (1971). A general model for the analysis of pedigree data, Human Heredity 21, 523–542.
- 17 Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. & Lander, E.S. (1996). Parametric and nonparametric linkage analysis: a unified multipoint approach, American Journal of Human Genetics 58, 1347–1363.
- 18 Fulker, D.W., Cherny, S.S. & Cardon, L.R. (1995). Multipoint interval mapping of quantitative trait loci, using sib pairs, American Journal of Human Genetics 56, 1224–1233.
- 19 Fulker, D.W. & Cherny, S.S. (1996). An improved multipoint sib-pair analysis of quantitative traits, Behavior Genetics 26, 527–532.
- 20 Almasy, L. & Blangero, J. (1998). Multipoint quantitative-trait linkage analysis in general pedigrees, American Journal of Human Genetics 62, 1198–1211.
- 21 Knapp, M., Seuchter, S.A. & Baur, M.P. (1994). Linkage analysis in nuclear families 2: relationship between affedted-sib-pair tests and lod score analysis, Human Heredity 44, 44–51.
- 22 Risch, N. (1990). Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs, American Journal of Human Genetics 46, 242–253.
- 23 Rabinowitz, D. (2002). Adjusting for population heterogeneity and misspecified haplotype frequencies when testing nonparametric null hypotheses in statistical genetics, Journal of the American Statistical Association 97, 742–758.
- 24 Spielman, R.S., McGinnis, R.E. & Ewens, W.J. (1993). Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM), American Journal of Human Genetics 52, 506–516.
- 25 Huang, J. & Jiang, Y. (1999). Linkage detection adaptive to linkage disequilibrium: the disequilibrium-likelihood-binomial test for affected-sibship data, American Journal of Human Genetics 65, 1741–1759.
- 26 Lo, S.H., Liu, X. & Shao, Y. (2003). A marginal likelihood model for family-based data, Annals of Human Genetics 67, 357–366.
- 27 Shao, Y. (2005). Adjustment for transmission heterogeneity in mapping complex genetic diseases using mixture models and score tests, Proceedings (American Statistical Association) 2005, 383–393.
- 28
Abel, L.,
Alcais, A. &
Maller, A.
(1998).
Comparison of four sib-pair linkage methods for analyzing sibships with more than two affected: interest of the binomial-maximum-likelihood approach,
Genetic Epidemiology
15,
371–390.
10.1002/(SICI)1098-2272(1998)15:4<371::AID-GEPI4>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 29 Wright, F.A. (1997). The phenotypic difference discards sib-pair QTL linkage information, American Journal of Human Genetics 60, 740–742.
- 30 Drigalenko, E. (1998). How sib pairs reveal linkage, American Journal of Human Genetics 63, 1242–1245.
- 31 Elston, R.C., Buxbaum, S., Jacobs, K.B. & Olson, J.M. (2000). Haseman and Elston revisited, Genetic Epidemiology 19, 1–17.
- 32 Xu, X., Weiss, S., Xu, X. & Wei, L.J. (2000). A unified Haseman-Elston method for testing linkage with quantitative traits, American Journal of Human Genetics 67, 1025–1028.
- 33 Forrest, W. (2001). Weighting improves the “New Haseman-Elston” method, Human Heredity 52, 47–54.
- 34 Sham, P.C. & Purcell, S. (2001). Equivalence between Haseman-Elston and variance-components linkage analyses for sib pairs, American Journal of Human Genetics 68, 1527–1532.
- 35 Visscher, P.M. & Hopper, J.L. (2001). Power of regression and maximum likelihood methods to map QTL from sib-pair and DZ twin data, Annals of Human Genetics 65, 583–601.
- 36 Tang, H.-K. & Siegmund, D. (2001). Mapping quantitative trait loci in oligogenic models, Biostatistics 2, 147–162.
- 37 Putter, H., Sandkuijl, L.A. & van Houwelingen, J.C. (2002). Score test for detecting linkage to quantitative traits, Genetic Epidemiology 22, 345–355.
- 38 Wang, K. & Huang, J. (2002). A score-statistic approach for the mapping of quantitative-trait loci with sibships of arbitrary size, American Journal of Human Genetics 70, 412–424.
- 39 Sham, P.C., Purcell, S., Cherny, S.S. & Abecasis, G.R. (2002). Powerful regression-based quantitative-trait linkage analysis of general pedigrees, American Journal of Human Genetics 71, 238–253.
- 40 Abecasis, G., Cherny, S., Cookson, W. & Cardon, L. (2002). Merlin: rapid analysis of dense genetic maps using sparse gene flow trees, Nature Genetics 30, 97–101.
- 41 Feingold, E. (2002). Regression-based quantitative-traitlocus mapping in the 21st century (Invited Editorial), American Journal of Human Genetics 71, 217–222.
- 42 Lange, K., Westlake, J. & Spence, M.A. (1976). Extensions to pedigree analysis. III. Variance components by the scoring method, Annals of Human Genetics 39, 485–491.
- 43 Hopper, J.L. & Mathews, J.D. (1982). Extensions to multivariate normal models for pedigree analysis, Annals of Human Genetics 46, 373–383.
- 44 Goldgar, D.E. (1990). Multipoint analysis of human quantitative genetic variation, American Journal of Human Genetics 47, 957–967.
- 45 Schork, N.J. (1993). Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power, and modeling considerations, American Journal of Human Genetics 53, 1306–1319.
- 46 Amos, C.I. (1994). Robust variance-components approach for assessing genetic linkage in pedigrees, American Journal of Human Genetics 54, 535–543.
- 47 de Andrade, M., Gueguen, R., Visvikis, S., Sass, C., Siest, G. & Amos, C.I. (2002). Extension of variance components approach to incorporate temporal trends and longitudinal pedigree data analysis, Genetic Epidemiology 22, 221–232.
- 48 Geller, F., Dempfle, A. & Gorg, T. (2003). Genome scan for body mass index and height in the Framingham Heart Study, BMC Genetics (Suppl) 4, S91.
- 49 Amos, C.I., Zhu, D.K. & Boerwinkle, E. (1996). Assessing genetic linkage and association with robust components of variance approaches, Annals of Human Genetics 60, 143–160.
- 50 Allison, D.B., Neale, M.C., Zannolli, R., Schork, N.J., Amos, C.I. & Blangero, J. (1999). Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait locimapping procedure, American Journal of Human Genetics 65, 531–544.
- 51 Feingold, E. (2001). Methods for linkage analysis of quantitative trait loci in humans, Theoretical Population Biology 60, 167–180.
- 52 Allison, D.B., Fernández, J.R., Heo, M. & Beasley, T.M. (2000). Testing the robustness of the new Haseman-Elston quantitative-trait loci mapping procedure, American Journal of Human Genetics 67, 249–252.
- 53 Strug, L., Sun, L. & Corey, M. (2003). The genetics of cross-sectional and longitudinal body mass index, BMC Genetics (Suppl) 4, S14.
- 54 Diao, G. & Lin, D.Y. (2005). A powerful and robust method for mapping quantitative trait loci in genetic pedigrees, American Journal of Human Genetics 77, 97–111.
- 55 Lander, E.S. & Green, P. (1987). Construction of multilocus genetic linkage maps in humans, Proceedings of the National Academy of Sciences USA 84, 2363–2367.
- 56 Diao, G. & Lin, D.Y. (2006). Semiparametric variance-component models for linkage and association analysis of censored trait data, Genetic Epidemiology 30, 570–581.
- 57 Diao, G. & Lin, D.Y. (2005). Semiparametric methods for mapping quantitative trait loci with censored data, Biometrics 61, 789–798.
- 58 Liu, M., Lu, W. & Shao, Y. (2006). Interval mapping of quantitative trait loci for time-to-event data with the proportional hazards mixture cure model, Biometrics 62, 1053–1063.
- 59 Whittemore, A.S. (1996). Genome scanning for linkage: an overview, American Journal of Human Genetics 59, 704–716.
- 60 Guo, X. & Elston, R.C. (2001). One-stage versus two-stage strategies for genome scans, Advances in Genetics 42, 459–471.
- 61 Lander, E.S. & Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics 121, 185–199.
- 62 Feingold, E., Brown, P.O. & Siegmund, D. (1993). Gaussian models for genetic linkage analysis using complete high resolution maps of IBD, American Journal of Human Genetics 53, 234–251.
- 63 Lin, D.Y. (2005). An efficient Monte Carlo approach to assessing statistical significance in genomic studies, Bioinformatics 21, 781–787.
- 64 Elston, R.C. (1992). Designs for the global search of the human genome by linkage analysis, in Proceedings of the XVIth International Biometric Conference, Hamilton, pp. 39–51, December 1992.
- 65
Elston, R.C.,
Guo, X. &
Williams, L.V.
(1996).
Two-stage global search designs for linkage analysis using pairs of affected relatives,
Genetic Epidemiology
13,
535–558.
10.1002/(SICI)1098-2272(1996)13:6<535::AID-GEPI2>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 66 Ghosh, S. & Majumder, P.P. (2000). A two-stage variable stringency semi-parametric method for mapping quantitative trait loci with the use of genome-wide scan data on sib pairs, American Journal of Human Genetics 66, 1046–1061.
Citing Literature
Encyclopedia of Quantitative Risk Analysis and Assessment
Browse other articles of this reference work: