Fermentative Production of Building Blocks for Chemical Synthesis of Polyesters
Dr. Sang Yup Lee
- [email protected]
- +82-42-869-3930 | Fax: +82-42-869-3910
Korea Advanced Institute of Science and Technology, Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical Engineering and BioProcess Engineering Research Center, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
Search for more papers by this authorDr. Sang Hyun Park
- [email protected]
- +82-42-869-3906 | Fax: +82-42-869-3910
Korea Advanced Institute of Science and Technology, Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical Engineering and BioProcess Engineering Research Center, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
ChiroBio Inc., #2324 Undergraduate Building 2, KAIST, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
Search for more papers by this authorM. Eng. Soon Ho Hong
- [email protected]
- +82-42-869-3970 | Fax: +82-42-869-3910
Korea Advanced Institute of Science and Technology, Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical Engineering and BioProcess Engineering Research Center, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
Search for more papers by this authorM. Eng. Young Lee
- [email protected]
- +82-42-869-3970 | Fax: +82-42-869-3910
Korea Advanced Institute of Science and Technology, Metabolic and biomolecular Engineering National Research Laboratory, Department of chemical Engineering and BioProcess Engineering Research Center, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
ChiroBio Inc., #2324 Undergraduate Building 2, KAIST, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
Search for more papers by this authorM. Eng. Seung Hwan Lee
- [email protected]
- +82-42-869-3970 | Fax: +82-42-869-3910
Korea Advanced Institute of Science and Technology, Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical Engineering and bioProcess Engineering Research Center, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
Search for more papers by this authorDr. Sang Yup Lee
- [email protected]
- +82-42-869-3930 | Fax: +82-42-869-3910
Korea Advanced Institute of Science and Technology, Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical Engineering and BioProcess Engineering Research Center, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
Search for more papers by this authorDr. Sang Hyun Park
- [email protected]
- +82-42-869-3906 | Fax: +82-42-869-3910
Korea Advanced Institute of Science and Technology, Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical Engineering and BioProcess Engineering Research Center, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
ChiroBio Inc., #2324 Undergraduate Building 2, KAIST, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
Search for more papers by this authorM. Eng. Soon Ho Hong
- [email protected]
- +82-42-869-3970 | Fax: +82-42-869-3910
Korea Advanced Institute of Science and Technology, Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical Engineering and BioProcess Engineering Research Center, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
Search for more papers by this authorM. Eng. Young Lee
- [email protected]
- +82-42-869-3970 | Fax: +82-42-869-3910
Korea Advanced Institute of Science and Technology, Metabolic and biomolecular Engineering National Research Laboratory, Department of chemical Engineering and BioProcess Engineering Research Center, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
ChiroBio Inc., #2324 Undergraduate Building 2, KAIST, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
Search for more papers by this authorM. Eng. Seung Hwan Lee
- [email protected]
- +82-42-869-3970 | Fax: +82-42-869-3910
Korea Advanced Institute of Science and Technology, Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical Engineering and bioProcess Engineering Research Center, 373-1 Kusong-dong, Yusong-gu, Taejon, Korea, 305-701
Search for more papers by this authorAbstract
- Introduction
- Historical Outline
- Dicarboxylic Acids
- Succinic Acid
- Production of Succinic Acid by Non-Recombinant Microorganisms
- Production of Succinic Acid by Metabolically Engineered E. coli
- Adipic Acid
- Succinic Acid
- Diols
- 1,2-Propanediol
- Microbial Production of 1,2-Propanediol by Wild-type Bacteria
- Production of 1,2-Propanediol by Metabolically Engineered Bacteria
- 1,3-Propanediol
- Production of 1,3-Propanediol by Wild-type Bacteria
- Production of 1,3-Propanediol by Metabolically Engineered Bacteria
- 1,4-Butanediol
- 1,2-Propanediol
- Hydroxy Acids
- Lactic Acid
- Microorganisms
- Carbon and Nitrogen Sources
- Cell Culture Modes
- Separation/Purification
- Lactones and Other Cyclic Esters
- Lactic Acid
- Outlook and Perspectives
- Acknowledgements
- Patents
References
- Abbad-Andaloussi, S., Guedon, E., Spiesser, E., Petitdemange, H. (1996) Glycerol dehydratase activity: the limiting step for 1,3-propanediol production by Clostridium butyricum, Lett. Appl. Microbiol. 22, 311–314.
- Abe, S. I., Takagi, M. (1991) Simultaneous saccharification and fermentation of cellulose to lactic acid, Biotechnol. Bioeng. 37, 93–96.
- Aeschlimann, A., von Stockar, U. (1989) The production of lactic acid from whey permeate by Lactobacillus helveticus, Biotechnol. Lett. 11, 195–200.
- Aeschlimann, A., von Stockar, U. (1990) The effect of yeast extract supplementation on the production of lactic acid from whey permeate by Lactobacillus helveticus, Appl. Microbiol. Biotechnol. 32, 398–402.
- Aeschlimann, A., von Stockar, U. (1991) Continuous production of lactic acid from whey permeate by Lactobacillus helveticus in a cell-recycle reactor, Enzyme Microb. Technol. 13, 811–816.
- Aeschlimann, A., Di Stasi, L., von Stockar, U. (1990) Continuous production of lactic acid from whey permeate by Lactobacillus helveticus in two chemostats in series, Enzyme Microb. Technol. 12, 926–932.
-
Ahrens, K.,
Menzel, K.,
Zeng, A.-P.,
Deckwer, W.-D.
(1998)
Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture. III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation,
Biotechnol. Bioeng. 59,
544–552.
10.1002/(SICI)1097-0290(19980905)59:5<544::AID-BIT3>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- Aksu, Z., Kutal, T. (1986) Lactic acid production from molasses utilizing Lactobacillus delbrueckii and invertase together, Biotechnol. Lett. 8, 157–160.
- Altaras, N. E., Cameron, D. C. (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli, Appl. Environ. Microbiol. 65, 1180–1185.
- Altaras, N. E., Cameron, D. C. (2000) Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli, Biotechnol. Prog. 16, 940–946.
- Amrane, A., Prigent, Y. (1993) Influence of media composition on lactic acid production rate from whey by Lactobacillus helveticus, Biotechnol. Lett. 15, 239–244.
- Amrane, A., Prigent, Y. (1994) Lactic acid production from lactose in batch culture: analysis of the data with the help of a mathematical model; relevance for nitrogen source and preculture assessment, Appl. Microbiol. Biotechnol. 40, 644–649.
- Amrane, A., Prigent, Y. (1996) A novel concept of bioreactor: specialized function two-stage continuous reactor, and its application to lactose conversion into lactic acid, J. Biotechnol. 45, 195–203.
- Amrane, A., Prigent, Y. (1997) Growth and lactic acid production coupling for Lactobacillus helveticus cultivated on supplemented whey: influence of peptidic nitrogen deficiency, J. Biotechnol. 55, 1–8.
- Amrane, A., Prigent, Y. (1998) Influence of yeast extract concentration on batch cultures of Lactobacillus helveticus: growth and production coupling, World J. Microbiol. Biotechnol. 14, 529–534.
- Anderson, A. J., Dawes, E. A., (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates, Microbiol. Rev. 54, 450–472.
- Atadan, E. M., Bruner, H. S., Jr. (1994) Process for the preparation of adipic acid or pentenoic acid, U.S. Patent No. 5,292,944.
- Bailey, J. E. (1991) Towards a science of metabolic engineering, Science 252, 1668–1674.
- Barbirato, F., Bories, A., Camarasa-Claret, C., Grivet, J. P. (1995) Glycerol fermentation by a new 1,3-propanediol producing microorganism: Enterobacter agglomerans, Appl. Microbiol. Biotechnol. 43, 786–793.
- Benninga, H. (1990) A History of Lactic Acid Making, Dordrecht/Norwell, MA: Kluwer Academic.
- Bero, M., Kasperczyk, J., Adamus, G. (1993) Coordination polymerization of lactides. 3. Copolymerization of l, l-lactide and epsilon-caprolactone in the presence of initiators containing Zn and Al, Makromol. Chem. 194, 907–912.
- Beziat, J.C., Besson, M., Gallezot, P. (1996) Liquid phase oxidation of cylohexanol to adipic acid with molecular oxygen on metal catalysts, Appl. Catal. A: General 135, L7–L11.
- Bhatia, K. K. (1989) Atmospheric pressure process for preparing cyclic esters, U.S. Patent No. 4,835,293.
- Bibal, B., Kapp, C., Goma, G., Pareilleux, A. (1989) Continuous culture of Streptococcus cremoris on lactose using various medium conditions, Appl. Microbiol. Biotechnol. 32, 155–159.
- Biebl, H., Menzel, K., Zeng, A.-P., Deckwer, W.-D. (1999) Microbial production of 1,3-propanediol, Appl. Microbiol. Biotechnol. 52, 289–297.
- Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., Shao, Y. (1997) The complete genome sequence of Escherichia coli K-12, Science 277, 1453–1462.
- Börgardts, P., Krischke, W., Trösch, W., Brunner, H. (1998) Integrated bioprocess for the simultaneous production of lactic acid and dairy sewage treatment, Bioprocess Eng. 19, 321–329.
- Boronat, A., Aguilar, J. (1981) Metabolism of l-fucose and l-rhamnose in Escherichia coli: differences in induction of propanediol oxidoreductase, J. Bacteriol. 147, 181–185.
- Boyaval, P., Corre, C., Terre, S. (1987) Continuous lactic acid fermentation with concentrated product recovery by ultrafiltration and electrodialysis, Biotechnol. Lett. 9, 207–212.
- Broecker, R. J., Schwarzmann, M. (1977) Manufacture of butanediol and/or tetrahydrofuran from maleic acid/or succinic anhydride via γ-butyrolactone, U.S. Patent No. 4,048,196.
- Bruner, H. S., Jr. (1992) Process for the manufacture of adipic acid, U.S. Patent No. 5,166,421.
- Bruner, H. S., Jr., Lane, S. L., Murphree, B. E. (1998) Manufacture of adipic acid, U.S. Patent No. 5,710,325.
- Bryant, M. P., Small, N. (1956) Characteristics of two new genera of anaerobic curved rods isolated from the rumen of cattle, J. Bacteriol. 72, 22–26.
- Bryant, M. P., Bouma, C., Chu, H. (1958) Bacteroides ruminicola n. sp. and the new species Succinomonas amylolytica. Species of succinic acid producing anaerobic bacteria by the bovine rumen, J. Bacteriol. 76, 15–23.
- Budge, J. R., Attig, T. G., Dubbert, R. A. (1999) Catalysts for the hydrogenation of maleic acid to 1,4-butanediol, U.S. Patent No. 5969164.
- Burke, P. M. (1994) Preparation of adipic acid from lactones, U.S. Patent No. 5,359,137.
- Cameron, D. C., Cooney, C. L. (1986) A novel fermentation: the production of (R)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum, Bio/Technology 4, 651–654.
- Cameron, D. C., Altaras, N. E., Hoffman, M. L., Shaw, A. J. (1998) Metabolic engineering of propanediol pathways, Biotechnol. Progress 14, 116–125.
- Castiglioni, G. L., Ferrari, M., Guercio, A., Vaccari, A., Lanci, R., Fumagalli, C. (1996) Chromium-free catalysts for selective vapor phase hydrogenation of maleic anhydride to γ-butyrolactone, Catalysis Today 27, 181–186.
- Chang, D. E., Jung, H. C., Rhee, J. S., Pan, J. G. (1999) Homofermentative production of d- or l-lactate in metabolically engineered Escherichia coli RR1, Appl. Environ. Microbiol. 65, 1384–1389.
- Chatterjee, M., Chakrabarty, S. L., Chattopadhyay, B. D., Mandal, R. K. (1997) Production of lactic acid by direct fermentation of starchy wastes by an amylase-producing Lactobacillus, Biotechnol. Lett. 19, 873–874.
- Chatterjee, R., Millard, C. S., Champion, K., Clark, D. P., Donnelly, M. I. (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli, Appl. Environ. Microbiol. 67, 148–154.
- Chemical Market Reporter (1999) 255, 34–41.
- Chen, R., Lee, Y. Y. (1997) Membrane mediated extractive fermentation for lactic acid production from cellulosic biomass, Appl. Biochem. Biotechnol. 63–65, 435–448.
- Cheng, P., Mueller, R. E., Jaeger, S., Bajpai, R., Iannotti, E. L. (1991) Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus, J. Ind. Microbiol. 7, 27–34.
- Chopin, A. (1993) Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria, FEMS Microbiol. Rev. 12, 21–38.
- Coates, J. S., Newark, D. E. (1980) Reducing color formers in 1,4-butanediol, U.S. Patent No. 4,213,000.
- Dake, S., Gholap, R. V., Chaudhuri, R. V. (1987) Carbonylation of 1,4-butanediol diacetate using rhodminum complex catalyst: a kinetic study, Ind. Eng. Chem. Res. 26, 1513–1518.
- Daniel, R., Gottschalk, G. (1992) Growth temperature-dependent activity of glycerol dehydratase in Escherichia coli expressing the Citrobacter freundii regulon, FEMS Microbiol. Lett. 100, 281–286.
- Daniel, R., Boenigk, R., Gottschalk, G. (1995a) Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli, J. Bacteriol. 177, 2151–2156.
- Daniel, R., Stuertz, K., Gottschalk, G. (1995b) Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii, J. Bacteriol. 177, 4392–4401.
- Datta, R. (1989) Recovery and purification of lactate salts from whole fermentation broth by electrodialysis, U.S. Patent No. 4,885,247.
- Datta, R., Tsai, S.-P. (1997) Lactic acid production and potential uses: a technology and economics assessment, ACS Symp. Ser. 666, 224–236.
- Davis, C. P., Cleven, D., Brown, J., Balish, E. (1976) Anaerobiospirillum, a new genus of spiral-shaped bacteria, Int. J. Syst. Bacteriol. 26, 498–504.
- Deckwer, W.-D. (1995) Microbial conversion of glycerol to 1,3-propanediol, FEMS Microbiol. Rev. 16, 143–149.
- de Gooijer, C. D., Bakker, W. A. M., Beeftink, H. H., Tramper, J. (1996) Bioreactors in series: an overview of design procedures and practical applications, in: International Congress on Chemicals from Biotechnology, Hannover, Germany, Oct 18–20.
- Demirci, A., Pometto, A. L., III (1992) Enhanced production of d(-)-lactic acid by mutants of Lactobacillus delbrueckii ATCC 9649, J. Ind. Microbiol. 11, 23–28.
- Demirci, A., Pometto, A. L., III, Lee, B., Hinz, P. N. (1998) Media evaluation of lactic acid repeated-batch fermentation with Lactobacillus plantarum and Lactobacillus casei subsp. rhamnosus, J. Agric. Food. Chem. 46, 4771–4774.
- Dennis, D., Reichlin, M., Kaplan, N. O. (1965) Lactic acid racemization, Ann. NY Acad. Sci. 119, 868–876.
- de Vos, W. M. (1996) Metabolic engineering of sugar catabolism in lactic acid bacteria, Antonie van Leeuwenhoek 70, 223–242.
- Diamantoglon, M., Meyer, G. (1988) Process for the production of water-insoluble fibers of cellulose monoesters of maleic acid, water-insoluble fibers of cellulose monoesters of maleic acid, succinic acid and phthalic acid, having an extremely high absorbability for water and physiological liquids, U.S. Patent No. 4,734,239.
- Doi, Y. (1990) Microbial Polyesters, New York: VCH.
- Donnelly, M. I., Millard, C. S., Clark, D. P., Chen, M. J., Rathke, J. W. (1998) A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol, Appl. Biochem. Biotechnol. 70-72, 187–198.
- Donoghue, N. A., Trudgill, P. W. (1975) The metabolism of cyclohexanol by Acinetobacter NCIB 9871, Eur. J. Biochem. 60, 1–7.
- Draths, K. M., Frost, J. W. (1994) Environmentally compatible synthesis of adipic acid from d-glucose, J. Am. Chem. Soc. 116, 399–400.
- Dutta, S. K., Mukherjee, A., Chakraborty, P. (1996) Effect of product inhibition on lactic acid fermentation: simulation and modeling, Appl. Microbiol. Biotechnol. 46, 410–413.
- Edwards, J. S., Ramakrishna, R., Schilling, C. H., Palsson, B. O. (1999) Metabolic flux balance analysis, in: Metabolic Engineering ( S. Y. Lee, E. T. Papoutsakis, Eds.), New York: Marcel Dekker, 13–57.
- El Sabaeny, A. H. (1996) Influence of medium composition on lactic acid production from dried whey by Lactobacillus delbrueckii, Microbiologia 12, 411–416.
- Faber, M. (1983) Process for producing adipic acid from biomass, U.S. Patent No. 4,400,486.
- Fischer, R., Sigwart, C. (2000) Preparation of 1,4-butanediol, U.S. Patent No. 6,103,941.
- Forage, R. G., Lin, E. C. C. (1982) dha systems mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418, J. Bacteriol. 151, 591–599.
- Fordyce, A. M., Crow, V. L., Thomas, T. D. (1984) Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis, Appl. Environ. Microbiol. 48, 332–337.
-
Freund, A.
(1881)
Über die Bildung und Darstellung von Trimethylenalkohol aus Glycerin,
Monatsh. Chem. 2,
636–641.
10.1007/BF01516545 Google Scholar
- Friedman, M. R., Gaden, E. L. J. (1970) Growth and acid production by Lactobacillus delbrueckii in a dialysis culture system, Biotechnol. Bioeng. 12, 961–974.
- Frost, J. W., Draths, K. M. (1996) Synthesis of adipic acid from biomass-derived carbon source, U.S. Patent No. 5,487,987.
- Fryzuk, M. D., Bosnich, B. (1978) Asymmetric synthesis. An asymmetric homogeneous hydrogenation catalyst which breeds its own chirality, J. Am. Chem. Soc. 100, 5491–5494.
- Garrigues, C., Loubiere, P., Lindley, ND., Cocaign-Bousquet, M. (1997) Control of shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio, J. Bacteriol. 179, 5282–5287.
- Garvie, E. I. (1980) Bacterial lactate dehydrogenases, Microbiol. Rev. 44, 106–139.
- Gätje, G., Gottschalk, G. (1991) Limitation of growth and lactic acid production in batch and continuous cultures of Lactobacillus helveticus, Appl. Microbiol. Biotechnol. 34, 446–449.
- Giraud, E., Champailler, A., Raimbault, M. (1994) Degradation of raw starch by a wild amylotic strain of Lactobacillus plantarum, Appl. Environ. Microbiol. 60, 4319–4323.
- Göksungur, Y. and Güvenç, U. (1997) Batch and continuous production of lactic acid from beet molasses by Lactobacillus delbrueckii IFO 3202, J. Chem. Technol. Biotechnol. 69, 399–404.
- Goldberg, I., Lonberg-Holm, K., Bagley, E. A., Stieglitz, B. (1983) Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase, Appl. Environ. Microbiol. 45, 1834–1847.
- Gonçalves, L. M. D., Xavier, A. M. R., Almeida, J. S., Carrondo, M. J. T. (1991) Concomitant substrate and product inhibition kinetics in lactic acid production, Enzyme Microb. Technol. 13, 314–319.
- Gruber, P. R., Hall, E. S., Kolstad, J. J., Iwen, M. L., Benson, R. D., Borchardt, R. L. (1993) Continuous process for the manufacture of a purified lactide from esters of lactic acid, U.S. Patent No. 5,247,059.
- Guettler, M. V., Jain, M. K. (1996) Method for making succinic acid, Anaerobiospirillum succiniciproducens variants for use in the process and methods for obtaining variants, U.S. Patent No. 5,521,075.
- Guettler, M. V., Jain, M. K., Rumler, D. (1996) Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants, U.S. Patent No. 5,573,931.
- Guettler, M. V., Rumler, D., Jain, M. K. (1999) Actinobacillus succinogenes sp. nov., a novel succinic acid producing strain from the bovine rumen, Int. J. Syst. Bacteriol. 49, 207–216.
- Gunzel, B., Yonsel, S., Deckwer, W.-D. (1991) Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 m3, Appl. Microbiol. Biotechnol. 36, 289–295.
-
Guoqiang, D.,
Kaul, R.,
Mattiasson, B.
(1991)
Evaluation of alginate-immobilized Lactobacillus casei for lactate production,
Appl. Microbiol. Biotechnol. 36,
309–314.
10.1007/BF00208147 Google Scholar
- Hara, Y., Inagaki, H. (1991) Method for producing 1,4-butanediol, U.S. Patent No. 5,077,442.
- Hara, Y., Kusaka, H., Inagaki, H., Takahashi, K., Wada, K. (2000) A novel production of γ-butyrolactone catalyzed by ruthenium complexes, J. Catalysis 194, 188–197.
- Haynie, S. L., Wagner, L. W. (1996) Process for making 1,3-propanediol from carbohydrates mixed microbial culture, U.S. Patent No. 5,599,689.
- Held, A. M. (1996) The fermentation of glycerol to 1,3-propanediol by Klebsiella pneumonia, Master's thesis, University of Wisconsin-Madison, USA.
- Hofvendahl, K. (1998) Fermentation of wheat starch hydrolysate by Lactococcus lactis: factors affecting product formation, Ph.D. Thesis, Lund University, Lund, Sweden.
- Hofvendahl, K. and Hahn-Hägerdal, B. (1997) l-lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci, Enzyme Microb. Technol. 20, 301–307.
- Hofvendahl, K. and Hahn-Hägerdal, B. (2000) Factors affecting the fermentative lactic acid production from renewable resources, Enzyme Microb. Technol. 26, 87–107.
- Hofvendahl, K., van Niel, E. W. J., Hahn-Hägerdal, B. (1999) Effect of temperature and pH on growth and product formation of Lactococcus lactis spp. lactis ATCC 19435 growing on maltose, Appl. Microbiol. Biotechnol. 51, 669–672.
- Holten, C. H., Müller, A., Rehbinder, D. (1971) Lactic Acid – Properties and Chemistry of Lactic Acid and Derivatives, Weinheim, Germany: VCH.
- Homann, T., Tag, C., Biebl, H., Deckwer, W.-D., Schink, B. (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains, Appl. Microbiol. Biotechnol. 33, 121–126.
- Hong, S. H., Lee, S. Y. (2001) Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity, Biotechnol. Bioeng. 74, 89–95.
- Hori, Y., Takahashi, Y., Yamaguchi, A., Nishishita, T. (1993) Ring-opening copolymerization of optically-active beta-butyrolactone with several lactones catalyzed by distannoxane complexes – Synthesis of new biodegradable polyesters, Macromolecules 26, 4388–4390.
- Huang, K., Rudolph, F. B., Bennett, G. N. (1999) Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1,2-propanediol, Appl. Environ. Microbiol. 65, 3244–3247.
- Hujanen, M., Linko, Y.-Y. (1996) Effect of temperature and various nitrogen sources on l(+)-lactic acid production by Lactobacillus casei, Appl. Microbiol. Biotechnol. 45, 307–313.
- Ishizaki, A., Ueda, T., Tanaka, K., Stanbury, P. F. (1992) l-Lactate production from xylose employing Lactococcus lactis IO-1, Biotechnol. Lett. 14, 599–604.
- Isogai, N., Hosokawa, M., Okawa, T., Wakui, N., Watanabe, T. Process for producing adipic acid diester, U.S. Patent No. 4,404,394.
- Jain, M. K., Datta, R., Zeikus, J. G. (1989) High-value organic acids fermentation – emerging processes and products, in: Bioprocess Engineering: The First Generation ( T. K. Ghosh, Ed.), Chichester: Ellis Harwood, 366–398.
- Javanainen, P., Linko, Y.-Y. (1995) Lactic acid fermentation on barely flour without additional nutrients, Biotechnol. Tech. 9, 543–548.
- Kandler, O. (1983) Carbohydrate metabolism in lactic acid bacteria, Antonie van Leeuwenhoek 49, 209–224.
- Khan, J., Baig, M. A., Ehtehsamuddin, A. F. M. (1995) Production of lactic acid from potato by Lactobacillus delbrueckii, Sarhad, J. Ag. 11, 13–18.
-
Klaenhammer, T. R.,
Fitzgerald, G. F.
(1994)
Bacteriophages and bacteriophage resistance, in: Genetics and Biotechnology of Lactic Acid Bacteria ( M. J. Gasson, W. M. de Vos, Eds.), London: Blackie,
106–168.
10.1007/978-94-011-1340-3_3 Google Scholar
- Kometani, T., Morita, Y., Furui, H., Yoshii, H., Matsuno, R. (1993) Preparation of chiral 1,2-alkanediols with baker's yeast-mediated oxidation, Chem. Lett. 12, 2123–2124.
- Krischke, W., Schöder, M., Trösch, W. (1991) Continuous production of l-lactic acid from whey permeate by immobilized Lactobacillus casei spp. casei, Appl. Microbiol. Biotechnol. 34, 573–578.
- Kunz, D. A., Weimer, P. J. (1983) Bacterial formation and metabolism of 6-hydroxyhexanoate: evidence of a potential role for ω-oxidation, J. Bacteriol. 156, 567–575.
- Kurcok, P., Penczek, J., Franek, J., Jedliski, Z. (1992) Anionic-polymerization of lactones. 14. Anionic block copolymerization of delta-valerolactone and L-lactide initiated with potassium methoxide, Macromolecules 25, 2285–2289.
- Kurosawa, H., Ishikawa, H., Tanaka, H. (1988) l-lactic acid production from starch by coimmobilized mixed culture system of Aspergillus awamori and Streptococcus lactis, Biotechnol. Bioeng. 31, 183–187.
- Kwon, S., Lee, P. C., Lee, E. G., Chang, Y. K., Chang, H. N. (2000) Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate, Enzyme Microb. Technol. 26, 209–215.
- Laffend, L. A., Nagarajan, V., Nakamura, C. E. (1996) Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism, WO 96/53796.
- Laivenieks, M., Vieille, C., Zeikus, J. G. (1997) Cloning, sequencing, and overexpression of the Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase (pckA) gene, Appl. Environ. Microbiol. 63, 2273–2280.
- Lee, L. G., Whitesides, G. M. (1986) Preparation of optically active 1,2-diols and R-hydroxy ketones using glycerol dehydrogenase as catalyst: limits to enzyme-catalyzed synthesis due to noncompetitive and mixed inhibition byproduct, J. Org. Chem. 51, 25–36.
- Lee, P. C., Lee, W. G., Kwon, S., Lee, S. Y., Chang, H. N. (1999a) Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2/CO2 supplying and glucose concentration, Enzyme. Microb. Technol. 24, 549–554.
- Lee, P. C., Lee, W. G., Lee, S. Y., Chang, H. N. (1999b) Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production, Process Biochem. 35, 49–55.
- Lee, P. C., Lee, W. G., Lee, S. Y., Chang, H. N. (2000a) Succinic acid production with reduced byproduct formation in the fermentation of Anaerobiospirillum succiniproducens using glycerol as a carbon source, Biotechnol. Bioeng. 72, 41–48.
- Lee, P. C., Lee, W. G., Kwon, S. H., Lee, S. Y., Chang, H. N. (2000b) Batch and Continuous fermentation of Anaerobiospirillum succiniproducens for the production of succinic acid from whey, Appl. Microbiol. Biotechnol. 54, 23–27.
- Lee, P. C., Lee, W. G., Lee, S. Y., Chang, Y. K., Chang, H. N. (2000c) Fermentative production of succinic acid from glucose and corn steep liquor by Anaerobiospirillum succiniproducens, Biotechnol. Bioprocess Eng. 5, 379–381.
-
Lee, S. Y.
(1996)
Bacterial polyhydroxyalkanoates,
Biotechnol. Bioeng. 49,
1–14.
10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- Lee, S. Y., Chang, H. N. (1995) Production of poly-(hydroxyalkanoic acid), Adv. Biochem. Eng. Biotechnol. 52, 27–58.
- Lee, S. Y., Papoutsakis, E. T. (1999) The challenges and promise of metabolic engineering, in: Metabolic Engineering ( S. Y. Lee, E. T. Papoutsakis, Eds.), New York: Marcel Dekker, 1–12.
- Lemoigne, M. (1927) Ann. Inst. Pasteur 41, 148–165.
- Levene, P. A., Walti, A. (1943) l-Propylene glycol, in: Organic Syntheses Collective ( A. H. Blatt, Ed.), New York: John Wiley & Sons, 545–547.
- Linko, P., Stenroos, S.-L., Linko, Y.-Y., Koistinen, T., Harju, M., Heikonen, M. (1984) Applications of immobilized lactic acid bacteria, Ann. NY Acad. Sci. 434, 406–417.
- Linko, Y.-Y., Javanainen, P. (1996) Simultaneous liquefaction, saccharification, and lactic acid fermentation on barely starch, Enzyme Microb. Technol. 19, 118–123.
- Litchfield, J. H. (1996) Microbiological production of lactic acid, in: Advances in Applied Microbiology ( S. L. Neidleman, A. I. Laskin, Eds.), New York: Academic Press, 45–95, vol. 42.
- Lund, B., Norddahl, B., Ahring, B. (1992) Production of lactic acid from whey using hydrolysed whey protein as nitrogen source, Biotechnol. Lett. 14, 851–856.
- Major, N. C., Bull, A. T. (1989) The physiology of lactate production by Lactobacillus delbrueckii in a chemostat with cell recycle, Biotechnol. Bioeng. 34, 592–599.
- Maxwell, P. C. (1982) Production of muconic acid, U.S. Patent No. 4,355,107.
- Mayer, J. M., Kaplan, D. (1994) Biodegradable materials: balancing degradability and performance, Trends Polym. Sci. 2, 227–235.
- McCaskey, T. A., Zhou, S. D., Britt, S. N., Strickland, R. (1994) Bioconversion of municipal solid waste to lactic acid by Lactobacillus species, Appl. Biochem. Biotechnol. 45-46, 555–563.
- Mehaia, M. A., Cheryan, M. (1987a) Production of lactic acid from sweet whey permeate concentrates, Process Biochem. 22, 185–188.
- Mehaia, M. A., Cheryan, M. (1987b) Immobilization of Lactobacillus bulgaricus in a hollow-fiber bioreactor for production of lactic acid from whey permeate, Appl. Biochem. Biotechnol. 14, 21–27.
- Melzoch, K., Votruva, J., Habova, V., Rychtera, M. (1997) Lactic acid production in a cell retention continuous culture using lignocellulosic hydrolysate as a substrate, J. Biotechnol. 56, 25–31.
- Menzel, K., Zeng, A.-P., Deckwer, W.-D. (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae, Enzyme Microbiol. Technol. 20, 82–86.
- Mercier, P., Yerushalmi, L., Rouleau, D., Dochain, D. (1992) Kinetics of lactic acid fermentation on glucose and corn by Lactobacillus amylophilus, J. Chem. Technol. Biotechnol. 55, 111–121.
- Milko, E. S., Sperelup, O. V., Rabotnova, I. L. (1966) Die Milchsäuregärung von Lactobacterium delbrueckii bei kontinuerlicher Kultivierung, Z. Allg. Mikrobiol. 6, 297–301.
- Millard, C. S., Chao, Y., Liao, J. C., Donnelly, M. I. (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli, Appl. Environ. Microbiol. 62, 1808–1810.
- Monteagudo, J. M., Rodriguez, L., Rincon, J., Fuertes, J. (1997) Kinetics of lactic acid fermentation by Lactobacillus delbrueckii grown on beet molasses, J. Chem. Technol. Biotechnol. 68, 271–276.
- Mulligan, C. N., Safi, B. F., Groleau, D. (1991) Continuous production of ammonium lactate by Streptococcus cremoris in a three-stage reactor, Biotechnol. Bioeng. 38, 1173–1181.
- Nagata, M., Goto, H., Sakai, W., Tsutsumi, T. (2000) Synthesis and enzymatic degradation of poly(tetramethylene succinate) copolymers with ererphthalic acid, Polymer 41, 4373–4376.
- Nakamura, C. E., Gatenby, A. A., Hsu, A. K., Reau, R. D., Haynie, S. L., Diaz-Torres, M., Trimbur, D. E., Whited, G. M., Nagarajan, V., Payne, M. S., Picataggio, S. K., Nair, R. V. (2000) Method for the production of 1,3-propanediol by recombinant microorganisms, U.S. Patent No. 6,013,494.
- Nakayama, A., Kawasaki, N., Aiba, S., Maeda, Y., Arvanitoyannis, I., Yamamoto, N. (1998) Synthesis and biodegradability of novel copolyesters containing gamma-butyrolactone units, Polymer 39, 1213–1222.
- Neijssel, O. M., de Mattos, M. J., Tempest, D. W. (1996) Growth yield and energy distribution, in: Escherichia coli and Salmonella ( F. C. Neidhardt, Ed.), Washington D.C.: ASM Press, 1683–1692.
- Nevoigt, E., Stahl, U. (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev. 21, 231–241.
-
Nielsen, J.,
Villadsen, J.
(1994)
Analysis of reaction rates, in: Bioreaction Engineering Principles ( J. Nielsen, J. Villadsen, Eds.), New York: Plenum Press,
97–161.
10.1007/978-1-4757-4645-7_3 Google Scholar
- Norbeck, J., Påhlman, A.-K., Akhtar, N., Blomberg, A., Adler, L. (1996) Purification and characterization of two isoenzymes of dl-glycerol-3-phosphatase from Saccharomyces cerevisiae, J. Biol. Chem. 271, 13875–13881.
- Norris, D. B., Trudgill, P. W. (1971) The metabolism of cyclohexanol by Nocardia globerula CL1, Biochem. J. 121, 363–370.
- Norton, S., Lacroix, C., Vuillemard, J.-C. (1994a) Reduction of yeast extract supplementation in lactic acid fermentation of whey permeate by immobilized cell technology, J. Dairy Sci. 77, 2494–2508.
- Norton, S., Lacroix, C., Vuillemard, J.-C. (1994b) Kinetic study of continuous whey permeate fermentation by immobilized Lactobacillus helveticus for lactic acid production, Enzyme Microb. Technol. 16, 457–466.
- Ohara, H., Hiyama, K., Yoshida, T. (1992) Kinetics of growth and lactic acid production in continuous and batch culture, Appl. Microbiol. Biotechnol. 37, 544–548.
- Ohleyer, E., Blanch, H. W., Wilke, C. R. (1985) Continuous production of lactic acid in a cell recycle reactor, Appl. Biochem. Biotechnol. 11, 317–332.
- Olmos-Dichara, A., Ampe, F., Uribelarrea, J.-L., Pareilleux, A., Goma, G. (1997) Growth and lactic acid production by Lactobacillus rhamnosus in batch and membrane bioreactor: influence of east extract and tryptone enrichment, Biotechnol. Lett. 19, 709–714.
- Papanikolaou, S., Ruiz-Sanchez, P., Pariset, B., Blanchard, F., Fick, M. (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain, J. Biotechnol. 77, 191–208.
- Parajó, J. C., Alonso, J. L., Moldes, A. B. (1997) Production of lactic acid from lignocellulose in a single stage of hydrolysis and fermentation, Food Biotechnol. 11, 45–48.
- Payot, T., Chemaly, Z., Fick, M. (1999) Lactic acid production by Bacillus coagulans –kinetic studies and optimization of culture medium for batch and continuous fermentations, Enzyme Microb. Technol. 24, 191–199.
- Percy, D. S., Harrison, D. H. T. (1996) Abstracts of Papers, Annual Meeting of the American Society for Biochemistry and Molecular Biology, New Orleans; American Society for Biochemistry and Molecular Biology: Bethesda, Abstract 1367.
- Perego, G., Vercelio, T., Balbontin, G. (1993) Copolymers of l-lactide and d,l-lactide with 6-caprolactone – Synthesis and characterization, Makromol. Chem. 194, 2463–2469.
- Pflugmacher, U., Gottschalk, G. (1994) Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii, Appl. Microbiol. Biotechnol. 41, 313–316.
- Pitt, C. G. (1992) Non-microbial degradation of polyester mechanisms and modifications, in: Biodegradable Polymers and Plastics ( M. Vert, J. Feijen, A. Albertsson, G. Scott, E. Chiellini, Eds.), Wiltshire: Redwood Press, 7–19.
- Podlech, P.A.S., Luna, M.F., Jerke, P.R., De Souza Neto, C.A.C, Dos Passos, R.F., Souza, O., Borzani, W. (1990) Semicontinuous lactic fermentation of whey by Lactobacillus bulgaricus. I. Experimental results, Biotechnol. Lett. 12, 531–534.
- Potera, C. (1997) Genencor & Dupont create “green” polyester, Gen. Eng. News 12, 17.
- Purac, L. (1993) Natural Lactic Acid, Lincolnshire, IL.
- Ray, L., Mukherjee, G., Majumdar, S. K. (1991) Production of lactic acid from potato fermentation, Ind. J. Exp. Biol. 29, 681–685.
- Reeve, M. S., McCarthy, S. P., Gross, R. A. (1993) Preparation and characterization of (R)-poly(beta-hydroxybutyrate) poly(epsilon-caprolactone) and (R)-poly(beta-hydroxybutyrate) poly(lactide) degradable diblock copolymers, Macromolecules 26, 888–894.
- Reimann, A. (1997) Produktion von 1,3-Propandiol aus Glycerin durch Clostridium butyricum DSM 5431 und produkttolerante Mutanten, Dissertation, University of Braunschweig, Germany.
- Reimann, A., Biebl, H. (1996) Production of 1,3-propanediol by Clostridium DSM5431 and product tolerant mutants in fed-batch culture: feeding strategy for glycerol and ammonium, Biotechnol. Lett. 18, 827–832.
- Richter, K. and Träger, A. (1994) l(+)-Lactic acid from sweet sorghum by submerged and solid-state fermentations, Acta Biotechnol. 14, 367–378.
- Roukas, T. and Kotzekidou, P. (1991) Production of lactic acid from deproteinized whey by coimmobilized Lactobacillus casei and Lactococcus lactis cells, Enzyme Microb. Technol. 13, 33–38.
- Roukas, T. and Kotzekidou, P. (1998) Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture, Enzyme Microb. Technol. 22, 199–204.
- Roy, D., Goulet, J., LeDuy, A. (1986) Batch fermentation of whey ultrafiltrate by Lactobacillus helveticus for lactic acid production, Appl. Microbiol. Biotechnol. 24, 206–213.
- Roy, D., Goulet, J., LeDuy, A. (1987a) Continuous production of lactic acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus, J. Dairy Sci. 70, 506–513.
- Roy, D., LeDuy, A., Goulet, J. (1987b) Kinetics of growth and lactic acid production from whey permeate by Lactobacillus helveticus, Can. J. Chem. Eng. 65, 597–603.
- Sado, T., Tajima, M., Noguchi Research Foundation. (1980) Carbonylation of 1,4-butanediol by homogeneous catalyst, Japan Kakai Tokkyo Koho 8,051,037.
- Saint-Amans, S., Perlot, P., Goma, G., Soucaille, P. (1994) High production of 1,3-propanediol from glycerol by Clostridium butyricum VPI 3266 in a simply controlled fed-batch system, Biotechnol. Lett. 16, 832–836.
- Sakai, Y., Ishikawa, J., Fukasaka, S., Urimoto, H., Mitsui, R., Yanase, H., Kato, N. (1999) A new carboxylesterase from Brevibacterium linens IFO 12171 responsible for the conversion of 1,4-butanediol diacrylate to 4-hydroxybutyl adcrylate: purification, characterization, gene cloning, and gene expression in Escherichia coli, Biosci. Biotechnol. Biochem. 63, 688–697.
- Samuel, W. A., Lee, Y. Y., Anthony, W. B. (1980) Lactic acid fermentation of crude sorghum extract, Biotechnol. Bioeng. 22, 757–758.
- Samuelov, N. S., Lamed, R., Lowe, S., Zeikus, J. G. (1991) Influence of CO2-HCO3− level and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens, Appl. Environ. Microbiol. 57, 3013–3019.
- Samuelov, N. S., Datta, R., Jain, M. K., Zeikus, J. G. (1999) Whey fermentation by Anaerobiospirillum succiniciproducens for production of a succinate-based animal feed additive, Appl. Environ. Microbiol. 65, 2260–2263.
- Sanchez-Riera, F., Cameron, D. C., Cooney, C. L. (1987) Influence of environmental factors in the production of (R)-(-)-1,2-propanediol by Clostridium thermosaccharolyticum, Biotechnol. Lett. 9, 449–454.
- Scheifinger, C. C., Wolin, M. J. (1973) Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium, Appl. Microbiol. 26, 789–795.
- Schlander, J. H., Turek, T. (1999) Gas-phase hydrogenolysis of dimethyl maleate to 1,4-butanediol and γ-butyrolactone over copper/zinc oxide catalysts, Ind. Eng. Chem. Res. 38, 1264–1270.
- Schmidt, S. and Padukone, N. (1997) Production of lactic acid from wastepaper as a cellulosic feedback, J. Ind. Microb. Biotechnol. 18, 10–14.
- Seebach, D., Roggo, S., Zimmermann, J. (1987) Biological-chemical preparation of 3-hydroxycarboxylic acids and their use in EPC-syntheses, in Stereochemistry of Organic and Bioorganic Transformation, Workshop Conferences Hoechst, Vol. 17, ( W. Bartmann, K.B. Sharpless, Eds.), Weinheim, Germany: VCH, 85–126.
- Seyfried, M., Daniel, R., Gottschalk, G. (1996) Cloning, sequencing and overexpression of the genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii, J. Bacteriol. 178, 5793–5796.
- Shamala, T. R., Sreekantiah, K. R. (1987) Degradation of starchy substrates by a crude enzyme preparation and utilization of the hydrolysates for lactic fermentation, Enzyme Microb. Technol. 9, 726–729.
- Shamala, T. R., Sreekantiah, K. R. (1988) Fermentation of starch hydrolysates by Lactobacillus plantarum, J. Ind. Microbiol. 3, 175–178.
- Sjöberg, A., Persson, I., Quednau, M., Hahn-Hägerdal, B. (1995) The influence of limiting and non-limiting growth conditions on glucose and maltose metabolism in Lactococcus lactis spp. lactis strain, Appl. Microbiol. Biotechnol. 42, 931–938.
- Skraly, F. A., Cameron, D. C. (1998) Purification and characterization of a Bacillus licheniformis phosphatase specific for d-(R)-glycerophosphate, Arch. Biochem. Biophys. 349, 27–35.
- Smith, J. G., Kibler, C. J., Sublett, B. J., (1966) Preparation and properties of poly(methylene terephthalates), J. Polym. Sci. Part A-1 4, 1851–1859.
- Smith, J. S., Hillier, A. J., Lees, G. J. (1975) The nature of the stimulation of the growth of Streptococcus lactis by yeast extract, J. Dairy Res. 42, 123–138.
- Sprenger, G. A., Hammer, G. A., Johnson, E. A., Lin, E. C. C. (1989) Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae, J. Gen. Microbiol. 135, 1255–1262.
- Steinbüchel, A., Valentin, H. E. (1995) Diversity of bacterial polyhydroxyalkanoic acid, FEMS Microbiol. Lett. 128, 219–228.
- Stieber, R. W., Gerhardt, P. (1981) Dialysis continuous process for ammonium lactate fermentation: simulated and experimental dialysate-feed, immobilized-cell systems, Biotechnol. Bioeng. 23, 535–550.
- Stieglitz, B., Weimer, P. J. (1985) Novel microbial screen for detection of 1,4-butanediol, ethylene glycol, and adipic acid, Appl. Environ. Microbiol. 49, 593–598.
- Stiles, M. E., Holzapfel, W. H. (1997) Lactic acid bacteria of foods and their current taxonomy, Int. J. Food Microbiol. 36, 1–29.
- Stols, L., Donnelly, M. I. (1997) Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an Escherichia coli mutant, Appl. Environ. Microbiol. 63, 2695–2701.
- Stols, L., Kulkarni, G., Harris, B. G., Donnelly, M. I. (1997) Expression of Ascaris suum enzyme in a mutant Escherichia coli allows production of succinic acid from glucose, Appl. Biochem. Biotechnol. 63–65, 153–158.
- Suskovic, J., Novak, S., Maric, V., Matosic, S. (1991) Lactic acid fermentation kinetics on different carbon sources, Prehrambeno-Technol. Biotechnol. Rev. 29, 155–158.
- Tag, C.G. (1990) Mikrobielle Herstellung von 1,3-Propandiol, Thesis, Universitat Oldenburg, Oldenburg, Germany.
- Takahashi, S., Abbe, K., Yamada, T. (1982) Purification of pyruvate formate lyase from Streptococcus mutans and its regulatory properties, J. Bacteriol. 149, 1034–1040.
- Tang, C.-T., Ruch, F. E., Lin, E. C. C. (1979) Purification and properties of nicotinamide adenine dinucleotide-linked dehydrogenase that serves an Escherichia coli mutant for glycerol catabolism, J. Bacteriol. 140, 182–187.
- Tejayadi, S., Cheryan, M. (1995) Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor, Appl. Microbiol. Biotechnol. 43, 242–248.
- Tewari, H. K., Sethi, R. P., Sood, A., Singh, L. (1985) Lactic acid production from paneer whey by Lactobacillus bulgaricus, J. Res. Punjab Agric. Univ. 22, 89–98.
- Thomas, T. D., Ellwood, D. C., Longyear, M. C. (1979) Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures, J. Bacteriol. 138, 109–117.
- Tobimatsu, T., Azuma, M., Matsubara, H., Tskatori, H., Niida, T., Nishimoto, K., Satoh, H., Hayashi, R., Toraya, T. (1996) Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol-dehydratase of Klebsiella pneumoniae, J. Biol. Chem. 271, 22352–22357.
- Tong, I.-T., Cameron, D. C. (1992) Enhancement of 1,3-propanediol production by cofermentation in Escherichia coli expressing Klebsiella pneumoniae dha regulon, Appl. Biochem. Biotechnol. 34/35, 149–159.
- Tong, I.-T., Liao, H. H., Cameron, D. C. (1991) 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon, Appl. Environ. Microbiol. 57, 3541–3546.
- Tran-Din, K., Gottschalk, G. (1985) Formation of d-(-)-1,2-propanediol and d-(-)-lactate from glucose by Clostridium sphenoides under phosphate limitation, Arch. Microbiol. 142, 87–92.
- Tsai, T. S. and Millard, C. S. (1994) Improved pretreatment process for lactic acid production. PCT Int. Appl. Patent WO 94/13826:PCT/US93/11759.
- Tsutomu, O. (1982) Preparation of l-lactic acid, JP 57-110192A.
- Tuli, A., Sethi, R. P., Khanna, P. K., Maarwaha, S. S. (1985) Lactic acid production from whey permeate by immobilized Lactobacillus casei, Enzyme Microb. Technol. 7, 164–168.
- Turk, R. (1993) Metal free and low metal salt substitutes containing lysine, U.S. Patent No. 5,229,161.
- Tyree, R. W., Clausen, E. C., Gaddy, J. L. (1990) The fermentative characteristics of Lactobacillus xylosus on glucose and xylose, Biotechnol. Lett. 14, 599–604.
- Van der Werf, M. J., Guettler, M. V., Jain, M. K., Zeikus, J. G. (1997) Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z, Arch. Microbiol. 167, 332–342.
- Venkatesh, K.V., Wankat, P. C., Okos, M. R. (1994) Kinetic model for lactic acid production from cellulose by simultaneous fermentation and saccharification, AIChE Symp. Ser. 300, 80–87.
- Vickroy, T. B. (1985) Lactic acid, in: The Practice of Biotechnology: Commodity Products ( H. W. Blanch, S. Drew, D. I. C. Wang, Eds.), New York: Vickroy, 761–776.
- Wang, H., Seki, M., Furusaki, S. (1995) Mathematical model for analysis of mass transfer for immobilized cells in lactic acid fermentation, Biotechnol. Prog. 11, 558–564.
- Wang, X., Gong, C. S., Tsao, G. T. (1998) Bioconversion of fumaric acid to succinic acid by recombinant E. coli, Appl. Biochem. Biotechnol. 70-72, 919–928.
- Wollenberg, R. H., Frank, P. (1988) Modified succinimides in fuel composition, U.S. Patent No. 4,767,850.
- Wrobel, S. A. (1997) Continuous culture of Thermoanaerobacterium thermosaccharolyticum and the characterization of 1,2-propanediol production, M.S. Thesis, University of Wisconsin, Madison.
- Xiaodong, W., Xuan, G., Rakshit, S. K. (1997) Direct fermentative production of lactic acid on cassava and other starch substrates, Biotechnol. Lett. 19, 841–843.
- Yahannavar, V. M., Wang, D. I. C. (1991) Analysis of mass transfer for immobilized cells in an extractive lactic acid fermentation, Biotechnol. Bioeng. 37, 544–550.
- Yoo, I. K., Chang, H. N., Lee, E. G., Chang, Y. K., Moon, S. H. (1997) Effect of B vitamin supplementation on lactic acid production by Lactobacillus casei, J. Ferment. Bioeng. 84, 172–175.
- Yoshida, Y., Oka, H. (1981) Process for producing tetrahydrofuran and 1,4-butanediol, U.S. Patent No. 4,268,447.
- Yumoto, I. and Ikeda, K. (1995) Direct fermentation of starch to l-(+)-lactic acid using Lactobacillus amylophilus, Biotechnol. Lett. 17, 543–546.
- Zajacek, J. G., Shum, W. P. (2000) Butanediol production, U.S. Patent No. 6,127,584.
- Zeikus, J. G. (1980) Chemical and fuel production by anaerobic bacteria, Annu. Rev. Microbiol. 34, 423–464.
- Zeikus, J. G., Jain, M. K., Elankovan, P. (1999) Biotechnology of succinic acid production and markets for derived industrial products, Appl. Microbiol. Biotechnol. 51. 545–552.
- Zhang, D. X., Cheryan, M. (1991) Direct fermentation of starch to lactic acid by Lactobacillus amylovorus, Biotechnol. Lett. 13, 733–738.
- Zhang, D. X., Cheryan, M. (1994) Starch to lactic acid in a continuous membrane bioreactor, Process Biochem. 29, 145–150.
- Zhang, X., Wyss, U. P., Pichora, D., Goosen, M. F. A. (1993) Biodegradable polymers for orthopedic applications – Synthesis and processability of poly(L-lactide) and poly(lactide-co-epsilon-caprolactone), J. Macromol. Sci. - Pure Appl. Chem. A30, 933–947.
- Zwicker, N., Theobald, U., Zahner, H., Fiedler, H. P. (1997) Optimization of fermentation conditions for the production of ethylene-diamine-disuccinic acid by Amycolatopsis orientalis, J. Ind. Microbiol. Biotechnol. 19, 280–285.
Biopolymers Online: Biology • Chemistry • Biotechnology • Applications
Browse other articles of this reference work: