Changes in apparent diffusion coefficients of metabolites in rat brain after middle cerebral artery occlusion measured by proton magnetic resonance spectroscopy
Corresponding Author
Wolfgang Dreher
Universität Bremen, Biologie/Chemie, Bremen, Germany
Universität Bremen, Fachbereich 2 (Biologie/Chemie), Leobener Str., D-28334 Bremen, Germany===Search for more papers by this authorElmar Busch
Department of Neurology, University of Essen, Essen, Germany
Search for more papers by this authorDieter Leibfritz
Universität Bremen, Biologie/Chemie, Bremen, Germany
Search for more papers by this authorCorresponding Author
Wolfgang Dreher
Universität Bremen, Biologie/Chemie, Bremen, Germany
Universität Bremen, Fachbereich 2 (Biologie/Chemie), Leobener Str., D-28334 Bremen, Germany===Search for more papers by this authorElmar Busch
Department of Neurology, University of Essen, Essen, Germany
Search for more papers by this authorDieter Leibfritz
Universität Bremen, Biologie/Chemie, Bremen, Germany
Search for more papers by this authorAbstract
Diffusion-weighted proton MR spectroscopy and imaging have been applied to a rat brain model of unilateral middle cerebral artery occlusion between 1 and 4 hr post occlusion. Similar apparent diffusion coefficients (ADC) of most metabolites were observed within each hemisphere. In the ischemic ipsilateral hemisphere, the ADCs were (0.083–0.116) · 10–3 mm2/sec for lactate (Lac), alanine (Ala), γ-amino butyric acid (GABA), N-acetyl aspartate (NAA), glutamine (Gln), glutamate (Glu), total creatine (tCr), choline-containing compounds (Cho), and myo-inositol (Ins), in the contralateral hemisphere (0.138–0.158) · 10–3 mm2/sec for NAA, Glu, tCr, Cho, and Ins. Higher ADCs was determined for taurine (Tau) in the ipsilateral (0.144 · 10–3 mm2/sec) and contralateral (0.198 · 10–3 mm2/sec) hemisphere. In the ischemic hemisphere, a relative ADC decrease to 65–75% was observed for NAA, Glu, tCr, Cho, Ins and Tau, which was similar to the decrease of the water ADC (to 67%). The results suggest a common cause of the observed ADC changes and provide a broader experimental basis to evaluate theories of water and metabolite diffusion. Magn Reson Med 45:383–389, 2001. © 2001 Wiley-Liss, Inc.
REFERENCES
- 1 Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 1990; 14: 330–346.
- 2 Moseley ME, Butts K, Yenari MA, Marks M, de Crispigny A. Clinical aspects of DWI. NMR Biomed 1995; 8: 387–396.
- 3 Baird AE, Warach S. Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 1998; 18: 583–609.
- 4 Sotak CH. A method for measuring the apparent self-diffusion coefficient of in vivo lactic acid using double-quantum coherence-transfer spectroscopy. J Magn Reson 1990; 90: 198–204.
- 5 Merboldt K-D, Hörstermann D, Hänicke W, Bruhn H, Frahm J. Molecular self-diffusion of intracellular metabolites in rat brain in vivo investigated by localized proton NMR diffusion spectroscopy. Magn Reson Med 1993; 29: 125–129.
- 6 Posse S, Cuenod CA, LeBihan D. Human brain: proton diffusion MR spectroscopy. Radiology 1993; 188: 719–725.
- 7 Nicolay K, van der Toorn A, Dijkhuizen RM. In vivo diffusion spectroscopy. An overview. NMR Biomed 1995; 365–374.
- 8 Wick M, Nagamoto Y, Prielmeier F, Frahm J. Alteration if intracellular metabolite diffusion in rat brain in vivo during ischemia and reperfusion. Stroke 1995; 26: 1930–1934.
- 9 Bito Y, Hirata S, Nabeshima T, Yamamoto E. Echo-planar diffusion spectroscopic imaging. Magn Reson Med 1995; 33: 69–73.
- 10 van der Toorn A, Dijkhuizen RM, Tulleken CAF, Nicolay K. Diffusion of metabolites in normal and ischemic rat brain measured by localized 1H MRS. Magn Reson Med 1996; 36: 914–922.
- 11
Assaf Y,
Cohen Y.
In vivo and in vitro bi-exponential diffusion of N-acetyl aspartate (NAA)) in rat brain: a potential structural probe?
NMR Biomed
1998;
11:
67–74.
10.1002/(SICI)1099-1492(199804)11:2<67::AID-NBM503>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 12 Dijkhuizen RM, de Graaf RA, Tulleken KA, Nicolay K. Changes in the diffusion of water and intracellular metabolites after excitotoxic injury and global ischemia in neonatal rat brain. J Cereb Blood Flow Metab 1999; 19: 341–349.
- 13 Pfeuffer J, Tkac I, Gruetter R. Extracellular-intracellular distribution of glucose and lactate in the rat brain assessed noninvasively by diffusion-weighted 1H nuclear resonance spectroscopy in vivo. J Cereb Blood Flow Metab 2000; 20: 736–746.
- 14 Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson 1999; 141: 104–120.
- 15 Bax A, Freeman R. Investigation of complex networks of spin-spin coupling by two-dimensional NMR. J Magn Reson 1981; 44: 542–561.
- 16 Dreher W, Leibfritz D. Detection of homonuclear decoupled in vivo proton NMR spectra using constant time chemical shift encoding: CT-PRESS. Magn Reson Imaging 1999; 17: 141–150.
- 17 Busch E, Gyngell ML, Eis M, Hoehn-Berlage M, Hossmann K-A. Potassium-induced cortical spreading depressions during cerebral ischemia in rats: contribution to lesion growth assessed by diffusion-weighted NMR and biochemical imaging. J Cereb Blood Flow Metab 1996; 16: 1090–1099.
- 18 Norris DG. Ultrafast low-angle RARE: U-FLARE. Magn Reson Med 1991; 17: 539–542.
- 19 Norris DG, Börnert P. Coherence and interference in ultra-fast RARE experiments. J Magn Reson A 1993; 105: 123–127.
- 20 Haase A, Frahm J, Hänicke W, Matthaei D. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 1985; 30: 341–344.
- 21 Gordon RE, Ordidge RJ. Volume selection for high resolution NMR studies. In: Proceedings of the 3rd Annual Meeting of SMRM, New York, 1984. p 272–273.
- 22 Bottomley PA. Spatial localization in NMR-spectroscopy in vivo. Ann N Y Acad Sci 1987; 508: 333–348.
- 23 Mao J, Mareci TH, Andrew ER. Experimental study of optimal selective 180° radiofrequency pulses. J Magn Reson 1988; 79: 1–10.
- 24 Behar KL, Ogino T. Assignment of resonances in the 1H spectrum of rat brain by two-dimensional shift correlated and J-resolved NMR spectroscopy. Magn Reson Med 1991; 17: 285–303.
- 25 Dreher W, Leibfritz D. On the use of two-dimensional-J NMR measurements for in vivo proton MRS: measurement of homonuclear decoupled spectra without the need for short echo times. Magn Reson Med 1995; 34: 331–337.
- 26 Dreher W, Leibfritz D. Separate signal detection of glutamate and glutamine in the rat brain in vivo at 4.7 T using optimized 1H-CT-PRESS with effective homonuclear decoupling. In: Proceedings of the 6th Annual Meeting of ISMRM, Sydney, Australia, 1998. p 357.
- 27 Davis D, Ulatowski J, Eleff S, Izuta M, Mori S, Shungu D, van Zijl PCM. Rapid monitoring of changes in water diffusion coefficients during reversible ischemia in cat and rat brain. Magn Reson Med 1994; 31: 454–460.
- 28 Hoehn-Berlage M, Norris DG, Kohno K, Mies G, Leibfritz D, Hossmann K-A. Evaluation of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: the relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances. J Cereb Blood Flow Metab 1995; 15: 1002–1011.
- 29 Dreher W, Kühn B, Gyngell ML, Busch E, Niendorf T, Hossmann K-A, Leibfritz D. Temporal and regional changes during focal ischemia in rat brain studied by proton spectroscopic imaging and quantitative diffusion NMR imaging. Magn Reson Med 1998; 39: 878–888.
- 30 Dreher W, Leibfritz D. Apparent diffusion coefficients of metabolites with coupled and uncoupled resonances measured in the healthy rat brain by diffusion-weighted CT-PRESS. In: Proceedings of the 6th Annual Meeting of ISMRM, Sydney, Australia, 1998. p 343.
- 31 Gyngell ML, Michaelis T, Hörstermann D, Bruhn H, Hänicke W, Merboldt KD, Frahm J. Cerebral glucose is detectable by localized proton NMR spectroscopy in normal rat brain in vivo. Magn Reson Med 1991; 19: 489–495.
- 32 Shimada N, Graf R, Rosner G, Heiss W-D. Ischemia-induced accumulation of extracellular amino acids in cerebral cortex, white matter, and cerebrospinal fluid. J Neurochem 1993; 60: 66–71.
- 33 Uchiyama-Tsuyuki Y, Araki H, Yae T, Otomo S. Changes in the extracellular concentrations of amino acids in the rat striatum during transient focal cerebral ischemia. J Neurochem 1994; 62: 1074–1078.