Elastic registration of 3D cartilage surfaces from MR image data for detecting local changes in cartilage thickness
Tobias Stammberger
Institut für Medizinische Informatik und Systemforschung, GSF-Forschungszentrum, Neuherberg, Oberschleißheim, Germany
Institut für Klinische Radiologie, Klinikum Großhadern, LMU München, München, Germany
Search for more papers by this authorJan Hohe
Institut für Medizinische Informatik und Systemforschung, GSF-Forschungszentrum, Neuherberg, Oberschleißheim, Germany
Musculoskeletal Research Group, Anatomische Anstalt, LMU München, München, Germany
Search for more papers by this authorKarl-Hans Englmeier
Institut für Medizinische Informatik und Systemforschung, GSF-Forschungszentrum, Neuherberg, Oberschleißheim, Germany
Search for more papers by this authorMaximilian Reiser
Institut für Klinische Radiologie, Klinikum Großhadern, LMU München, München, Germany
Search for more papers by this authorCorresponding Author
Felix Eckstein
Musculoskeletal Research Group, Anatomische Anstalt, LMU München, München, Germany
Musculoskeletal Research Group, Anatomische Anstalt, Pettenkoferstr. 11, D-80336 München, Germany===Search for more papers by this authorTobias Stammberger
Institut für Medizinische Informatik und Systemforschung, GSF-Forschungszentrum, Neuherberg, Oberschleißheim, Germany
Institut für Klinische Radiologie, Klinikum Großhadern, LMU München, München, Germany
Search for more papers by this authorJan Hohe
Institut für Medizinische Informatik und Systemforschung, GSF-Forschungszentrum, Neuherberg, Oberschleißheim, Germany
Musculoskeletal Research Group, Anatomische Anstalt, LMU München, München, Germany
Search for more papers by this authorKarl-Hans Englmeier
Institut für Medizinische Informatik und Systemforschung, GSF-Forschungszentrum, Neuherberg, Oberschleißheim, Germany
Search for more papers by this authorMaximilian Reiser
Institut für Klinische Radiologie, Klinikum Großhadern, LMU München, München, Germany
Search for more papers by this authorCorresponding Author
Felix Eckstein
Musculoskeletal Research Group, Anatomische Anstalt, LMU München, München, Germany
Musculoskeletal Research Group, Anatomische Anstalt, Pettenkoferstr. 11, D-80336 München, Germany===Search for more papers by this authorAbstract
The objective of this work was to develop and validate a computational method for the registration (matching) of 3D cartilage plates from MR image data sets. The technique tracks local cartilage thickness changes over time. A 3D elastic registration technique was applied that identifies corresponding points of the bone-cartilage interface in MR data sets of 3D-reconstructed cartilage plates. In a first rigid preregistration step, the surfaces are aligned, using the principal axes decomposition to correct for different joint positions and orientations in the MR scanner. In a second step, the surfaces are deformed elastically, based on geometric surface features, until they are sufficiently similar to identify corresponding surface points. The method was validated against artificially corrupted cartilage surfaces and MR data obtained from in vivo and in vitro compression experiments. The in vivo reproducibility was tested on patellar data sets of volunteers, with repositioning of the joint in between replicate acquisitions. Magn Reson Med 44:592–601, 2000. © 2000 Wiley-Liss, Inc.
REFERENCES
- 1
Buckwalter JA,
Mankin HJ.
Articular cartilage: degeneration and osteoarthrosis, repair, regeneration, and transplantation.
J Bone Joint Surg
1997; 79-A:
612–632.
10.2106/00004623-199704000-00022 Google Scholar
- 2 Mühlbauer R, Lukasz S, Faber S, Stammberger T, Eckstein F. Comparison of knee joint cartilage thickness in triathletes and physically inactive volunteers—3D analysis with magnetic resonance imaging. Am J Sports Med 2000, in press.
- 3 Eckstein F, Tieschky M, Faber S, Haubner M, Kolem H, Englmeier K-H, Reiser M. Effects of physical exercise on cartilage volume and thickness in vivo—an MR imaging study. Radiology 1998; 207: 243–248.
- 4 Stammberger T, Herberhold C, Faber S, Englmeier K-H, Reiser M, Eckstein F. A method for quantifying time dependent changes in MR signal intensity of articular cartilage as a function of tissue deformation in intact joints. Med Eng Phys 1998; 20: 741–749.
- 5 Herberhold C, Faber S, Stammberger T, Steinlechner M, Putz R, Englmeier K-H, Reiser M, Eckstein F. In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech 1999; 32: 1287–1295.
- 6 Eckstein F, Tieschky M, Faber S, Englmeier K-H, Reiser M. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anat Embryol 1999; 200: 419–424.
- 7 Blankevoort L, Kupier JH, Huiskes R, Grootenboer HJ. Articular contact in a three-dimensional model of the knee. J Biomech 1991; 24: 1019–1031.
- 8 Heegaard J, Leyvraz PF, Curnier A, Rakotomananad L, Huiskes R. The biomechanics of the human patellar during passive knee flexion. J Biomech 1995; 28: 1265–1279.
- 9 Recht MP, Kramer J, Marcelis S, Pathria MN, Trudell D, Haghighi P, Sartoris DJ, Resnick D. Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology 1993; 187: 473–478.
- 10 Peterfy CG, Dijke CF van, Janzen DL, Gluer CC, Namba R, Majumdar S, Lang P, Genant HK. Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology 1994; 192: 485–491.
- 11 Marshall KW, Mikulius DJ, Guthrie BM. Quantitation of articular cartilage using magnetic resonance imaging and three-dimensional reconstruction. J Orthop Res 1995; 13: 814–823.
- 12 Eckstein F, Sittek H, Gavazzeni A, Schulte E, Milz S, Kiefer B, Reiser M, Putz R. Magnetic resonance chondro-crassometry (MR-CCM): a method for accurate determination of articular cartilage thickness? Magn Reson Med 1996; 35: 89–96.
- 13 Eckstein F, Gavazzeni A, Sittek H, Haubner M, Lösch A, Milz S, Englmeier K-H, Putz R, Reiser M. Determination of knee joint cartilage thickness using three dimensional magnetic resonance chondro-crassometry (3D MR-CCM). Magn Reson Med 1996; 36: 256–265.
- 14 Eckstein F, Schnier M, Haubner M, Priebsch J, Glaser C, Englmeier K-H, Reiser M. Accuracy of three-dimensional knee joint cartilage volume and thickness measurements with MRI. Clin Orthop 1998; 352: 137–148.
- 15 Cohen ZA, McCarthy DM, Kwak SD, Legrand P, Fogarasi F, Ciaccio EJ, Arteshian GA. Knee cartilage topography, thickness, and contact areas from MRI: in vitro calibration and in vivo measurements. Osteoarthritis Cartilage 1999; 7: 95–109.
- 16
Eckstein F,
Stammberger T,
Priebsch J,
Englmeier K-H,
Reiser M.
Effect of gradient and section orientation on quantitative analyses of knee joint cartilage.
J Magn Reson Imaging
2000;
11: 161–167.
10.1002/(SICI)1522-2586(200002)11:2<161::AID-JMRI13>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 17 Eckstein F, Westhoff J, Sittek H, Maag K-P, Haubner M, Faber S, Englmeier K-H, Reiser M. In vivo reproducibility of three-dimensional cartilage volume and thickness measurements with magnetic resonance imaging. AJR 1998; 170: 593–597.
- 18
Stammberger T,
Eckstein F,
Englmeier K-H,
Reiser M.
Determination of 3D cartilage thickness from MR imaging—computational method and reproducibility in the living.
Magn Reson Med
1999;
41: 529–536.
10.1002/(SICI)1522-2594(199903)41:3<529::AID-MRM15>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 19 Hyhlik-Dürr A, Faber S, Burgkart R, Stammberger T, Maag K-P, Englmeier K-H, Reiser M, Eckstein F. Precision of tibial cartilage morphometry with a coronal water-excitation MR-sequence. European Radiology 2000; 10: 297–303.
- 20 Robson MD, Hodgson RJ, Herrod NJ, Tyler JA, Hall LD. A combined analysis and magnetic resonance imaging technique for computerized automatic measurement of cartilage thickness in the distal interphalangeal joint. Magn Reson Imaging 1995; 13: 709–718.
- 21 Solloway S, Hutchinson CE, Waterton JC, Taylor CJ. The use of active shape models for making thickness measurements of articular cartilage from MR images. Magn Reson Med 1997; 37: 943–952.
- 22 Warfield S, Winalski C, Joesz F, Kikinis R. Automatic segmentation of MRI of the knee. In: Proceedings of the 6th Annual Meeting of ISMRM, Sydney, Australia, 1998. p 563.
- 23 Stammberger T, Eckstein F, Michaelis M, Englmeier K-H, Reiser M. Interobserver reproducibility of quantitative cartilage measurements: comparison of B-spline snakes and manual segmentation. Magn Reson Imaging 1999; 17: 1033–1042.
- 24 Burr DJ. A dynamic model for image registration. Computer Graphics and Image Processing 1981; 15: 102–112.
- 25 Burr DJ. Elastic matching of line drawings. IEEE transactions on pattern analysis and machine intelligence 1981; 3: 708–713.
- 26 Moshfeghi M. Elastic matching of multimodality medical images. Graphical models and image processing 1991; 53: 271–282.
- 27 Besl PJ, McKay DD. A method for registration of 3-D shapes. IEEE transactions on pattern analysis and machine intelligence 1992; 14: 239–256.
- 28 Hemler J, Napel S, Sumanaweera TS, Pichumani R, van den Elsen PA, Martin D, Drace J, Adler JR, Perkash I. Registration error quantification of a surface-based multimodality image fusion system. Med Phys 1995; 22: 1049–1056.
- 29 Herberhold C, Stammberger T, Faber S, Putz R, Englmeier K-H, Reiser M, Eckstein F. A MR-based technique for quantifying the deformation of articular cartilage during mechanical loading in an intact cadaver joint. Magn Reson Med 1998; 39: 843–850.
- 30 Borgefors G. Hierarchical chamfer matching: a parametric edge matching algorithm. IEEE transactions on pattern analysis and machine intelligence 1988; 10: 849–865.
- 31 Faber TL, Stokely EM. Orientation of 3-D structures in medical images. IEEE transactions on pattern analysis and machine intelligence 1988; 10: 626–633.
- 32 Bajcsy R, Kovacic S. Multiresolution elastic matching. Computer vision, graphics, and image processing 1989; 46: 1–21.
- 33 Alpert NM, Bradshaw JF, Kennedy D, Correia JA. The principal axes transformation—a method for image registration. J Nucl Med 1990; 31: 1717–1722.
- 34 Christensen GE, Rabbitt RD, Miller M I. 3D brain mapping using deformable neuroanatomy. Phys Med Biol 1994; 39: 609–618.
- 35 Herk M, Kooy H. Automatic three-dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching. Med Phys 1994; 21: 1163–1178.
- 36 Ettinger GJ, Grimson WEL, Lozano-Perez T, Wells- III WM, White SJ, Kikinis R. Automatic registration for multiple sclerosis change detection. In: IEEE workshop on biomedical image analysis, Seattle, WA, 1994.
- 37 Grimson WEL, Lozano-Perez T, Wells- III WM, Ettinger GJ, White SJ, Kikinis R. An automatic registration method for frameless stereotaxy. In: IEEE computer vision and pattern recognition, Seattle, WA, 1994.
- 38 Davatzikos C. Spatial normalization of 3D brain images using deformable models. J Comput Assist Tomogr 1996; 20: 656–665.
- 39
Schormann T,
Zilles K.
Three-dimensional linear and nonlinear transformations: an integration of light microscopical and MRI data.
Hum Brain Map
1998;
6: 339–347.
10.1002/(SICI)1097-0193(1998)6:5/6<339::AID-HBM3>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 40 Schormann T, Zilles K. Limitations of the principal-axes theory. IEEE trans medical imaging 1997; 16: 942–947.