ADMET Polymerization
Giovanni Rojas
Universidad Icesi, Cali, Colombia
University of Florida, Gainesville, FL, USA
Search for more papers by this authorJulia Pribyl
University of Florida, Gainesville, FL, USA
United States Naval Academy, Annapolis, MD, USA
Search for more papers by this authorGiovanni Rojas
Universidad Icesi, Cali, Colombia
University of Florida, Gainesville, FL, USA
Search for more papers by this authorJulia Pribyl
University of Florida, Gainesville, FL, USA
United States Naval Academy, Annapolis, MD, USA
Search for more papers by this authorAbstract
Acyclic diene metathesis (ADMET) polymerization is a synthetic strategy used to prepare polyolefins decorated with precisely spaced functional groups. Offered here is a survey of monomer design and synthesis, expert advice on α,ω-diene monomer synthesis and purification, and a guide to selecting the optimal catalyst. In light of the advances in olefin metathesis catalysts and the library of ADMET polymers prepared, a discussion of what has been learned from these carefully prepared precision polymers is presented.
Cited References
- 1R. H. Grubbs and E. Khosravi, Handbook of Metathesis, Polymer Synthesis 2nd ed., Wiley VCH, 2015, Vol. 3.
10.1002/9783527674107 Google Scholar
- 2J. Pribyl, K. B. Wagener, and G. Rojas, Mater. Chem. Front. 5, 14–43 (2021) DOI: 10.1039/d0qm00273a.
- 3M. D. Schulz and K. B. Wagener, Macromol. Chem. Phys. 215, 1936–1945 (2014) DOI: 10.1002/macp.201400268.
- 4M. D. Schulz and K. B. Wagener, Handbook of Metathesis, 2nd ed., John Wiley & Sons, Ltd, 2015, Vol. 3–3.
10.1002/9783527674107.ch39 Google Scholar
- 5G. Rojas, B. Inci, Y. Wei, and K. B. Wagener, J. Am. Chem. Soc. 131, 17376–17386 (2009) DOI: 10.1021/ja907521p.
- 6G. Rojas, E. B. Berda, and K. B. Wagener, Polymer (Guildf). 49, 2985–2995 (2008) DOI: 10.1016/j.polymer.2008.03.029.
- 7P. A. Pinke, D. J. Baker, R. G. Miller, P. A. Pinke, and D. J. Baker, J. Am. Chem. Soc. 92, 4490–4492 (1970) DOI: 10.1021/ja00717a076.
- 8J. L. Herisson and Y. Chauvin, Makromol. CHEMIE. 141, 161–176 (1971).
- 9J. H. Oskam, H. H. Fox, K. B. Yap, D. H. McConville, R. ÒDell, B. J. Lichtenstein, and R. R. Schrock, J. Organomet. Chem. 459, 185–198 (1993) DOI: 10.1016/0022-328X(93)86071-O.
- 10R. R. Schrock, R. T. DePue, J. Feldman, C. J. Schaverien, J. C. Dewan, and A. H. Liu, J. Am. Chem. Soc. 110, 1423–1435 (1988) DOI: 10.1021/ja00213a014.
- 11R. R. Schrock, R. T. DePue, J. Feldman, K. B. Yap, D. C. Yang, W. M. Davis, L. Park, M. DiMare, and M. Schofield, Organometallics. 9, 2850 (1990) DOI: 10.1021/om00160a040.
- 12R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. Dimare, and M. O'Regan, J. Am. Chem. Soc. 112, 3875–3886 (1990) DOI: 10.1021/ja00166a023.
- 13P. Schwab, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc. 118, 100–108 (1996) DOI: 10.1021/ja952676d.
- 14P. Schwab, M. B. France, J. W. Ziller, and R. H. Grubbs, Angew. Chem. Int. Ed. Engl. 34, 2039–2041 (1995) DOI: 10.1002/anie.199520391.
- 15S. B. T. Nguyen, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc. 115, 9858–9859 (1993) DOI: 10.1021/ja00074a086.
- 16D. A. Straus and R. H. Grubbs, J. Mol. Catal. 28, 9–25 (1985) DOI: 10.1016/0304-5102(85)87013-9.
- 17J. Bosco Lee, G. J. Gajda, W. P. Schaefer, T. R. Howard, T. Ikariya, D. A. Straus, and R. H. Grubbs, J. Am. Chem. Soc. 103, 7358–7361 (1981) DOI: 10.1021/ja00414a065.
- 18T. R. Howard, J. B. Lee, and R. H. Grubbs, J. Am. Chem. Soc. 102, 6876–6878 (1980) DOI: 10.1021/ja00542a050.
- 19M. Yu, S. Lou, and F. Gonzalez-Bobes, Org. Process Res. Dev. 22, 918–946 (2018) DOI: 10.1021/acs.oprd.8b00093.
- 20K. R. Fandrick, J. Savoie, N. Yee, J. J. Song, and C. H. Senanayake, Olefin Metathesis Theory Pract., Wiley Online Library, 2014.
- 21D. Hughes, P. Wheeler, and D. Ene, Org. Process Res. Dev. 21, 1938–1962 (2017) DOI: 10.1021/acs.oprd.7b00319.
- 22R. H. Grubbs, Adv. Synth. Catal. 349, 34–40 (2007) DOI: 10.1002/adsc.200600523.
- 23C. Slugovc, Olefin Metathesis Theory Pract., Wiley Online Library, 2014.
10.1002/9781118711613.ch10 Google Scholar
- 24C. Slugovc, Olefin Metathesis Theory Pract, Elsevier, 2014, Vol. 213.
10.1002/9781118711613.ch10 Google Scholar
- 25L. Caire da Silva, G. Rojas, M. D. Schulz, and K. B. Wagener, Prog. Polym. Sci. 69, 79–107 (2017) DOI: 10.1016/j.progpolymsci.2016.12.001.
- 26H. Li, L. Caire da Silva, M. D. Schulz, G. Rojas, and K. B. Wagener, Polym. Int. 66, 7–12 (2017) DOI: 10.1002/pi.5188.
- 27G. Rojas and K. B. Wagener, J. Org. Chem. 73, 4962–4970 (2008) DOI: 10.1021/jo800640j.
- 28T. A. Davidson and K. B. Wagener, Materials Science and Technology: A Comprehensive Treatment, American Chemical Society, 2008, Vol. 24.
- 29T. W. Baughman, E. Van Der Aa, S. E. Lehman, and K. B. Wagener, Macromolecules. 38, 2550–2551 (2005) DOI: 10.1021/ma0502755.
- 30J. C. Sworen, J. A. Smith, J. M. Berg, and K. B. Wagener, J. Am. Chem. Soc. 126, 11238–11246 (2004) DOI: 10.1021/ja047850p.
- 31J. C. Sworen, J. A. Smith, K. B. Wagener, L. S. Baugh, and S. P. Rucker, J. Am. Chem. Soc. 125, 2228–2240 (2003) DOI: 10.1021/ja020862v.
- 32J. A. Smith, K. R. Brzezinska, D. J. Valenti, and K. B. Wagener, Macromolecules. 33, 3781–3794 (2000) DOI: 10.1021/ma9920792.
- 33J. C. Sworen and K. B. Wagener, Macromolecules. 40, 4414–4423 (2007) DOI: 10.1021/ma070317k.
- 34T. W. Baughman, J. C. Sworen, and K. B. Wagener, Tetrahedron. 60, 10943–10948 (2004) DOI: 10.1016/j.tet.2004.09.021.
- 35B. Inci, I. Lieberwirth, W. Steffen, M. Mezger, R. Graf, K. Landfester, and K. B. Wagener, Macromolecules. 45, 3367–3376 (2012) DOI: 10.1021/ma3002577.
- 36H. Li, G. Rojas, and K. B. Wagener, J. Polym. Sci. Part A Polym. Chem. 56, 1705–1710 (2018) DOI: 10.1002/pola.29051.
- 37E. Boz, K. B. Wagener, A. Ghosal, R. Fu, and R. G. Alamo, Macromolecules. 39, 4437–4447 (2006) DOI: 10.1021/ma0605088.
- 38E. Boz, A. J. Nemeth, I. Ghiviriga, K. Jeon, R. G. Alamo, and K. B. Wagener, Macromolecules. 40, 6545–6551 (2007) DOI: 10.1021/ma070933g.
- 39E. Boz, A. J. Nemeth, R. G. Alamo, and K. B. Wagener, Adv. Synth. Catal. 349, 137–141 (2007) DOI: 10.1002/adsc.200600433.
- 40T. W. Baughman, C. D. Chan, K. I. Winey, and K. B. Wagener, Macromolecules. 40, 6564–6571 (2007) DOI: 10.1021/ma070841r.
- 41L. M. Hall, M. E. Seitz, K. I. Winey, K. L. Opper, K. B. Wagener, M. J. Stevens, and A. L. Frischknecht, J. Am. Chem. Soc. 134, 574–587 (2012) DOI: 10.1021/ja209142b.
- 42M. E. Seitz, C. D. Chan, K. L. Opper, T. W. Baughman, K. B. Wagener, and K. I. Winey, J. Am. Chem. Soc. 132, 8165–8174 (2010) DOI: 10.1021/ja101991d.
- 43K. L. Opper, D. Markova, M. Klapper, K. Müllen, and K. B. Wagener, Macromolecules. 43, 3690–3698 (2010) DOI: 10.1021/ma902659y.
- 44K. L. Opper, B. Fassbender, G. Brunklaus, H. W. Spiess, and K. B. Wagener, Macromolecules. 42, 4407–4409 (2009) DOI: 10.1021/ma900884f.
- 45K. A. Mauritz and R. B. Moore, Chem. Rev. 104, 4535–4585 (2004) DOI: 10.1021/cr0207123.
- 46T. W. Gaines, M. H. Bell, E. B. Trigg, K. I. Winey, and K. B. Wagener, Macromol. Chem. Phys. 219, 1–9 (2018) DOI: 10.1002/macp.201700634.
- 47D. Fischer and H. H. Eysel, J. Appl. Polym. Sci. 52, 545–548 (1994) DOI: 10.1002/app.1994.070520410.
- 48F. Kučera and J. Jančář, Polym. Eng. Sci. 38, 783–792 (1998) DOI: 10.1002/pen.10244.
- 49E. B. Trigg, T. W. Gaines, M. Maréchal, D. E. Moed, P. Rannou, K. B. Wagener, M. J. Stevens, and K. I. Winey, Nat. Mater. 17, 725–731 (2018) DOI: 10.1038/s41563-018-0097-2.
- 50J. N. Cambre and B. S. Sumerlin, Polymer (Guildf). 52, 4631–4643 (2011) DOI: 10.1016/j.polymer.2011.07.057.
- 51D. Roy and B. S. Sumerlin, ACS Macro Lett. 1, 529–532 (2012) DOI: 10.1021/mz300047c.
- 52D. Roy, J. N. Cambre, and B. S. Sumerlin, Chem. Commun. 2106–2108, (2009) DOI: 10.1039/b900374f.
- 53J. N. Cambre, D. Roy, S. R. Gondi, and B. S. Sumerlin, J. Am. Chem. Soc. 129, 10348–10349 (2007) DOI: 10.1021/ja074239s.
- 54C. Simocko, T. C. Young, and K. B. Wagener, Macromolecules. 48, 5470–5473 (2015) DOI: 10.1021/acs.macromol.5b01410.
- 55C. Simocko and K. B. Wagener, Organometallics. 32, 2513–2516 (2013) DOI: 10.1021/om400257b.
- 56T. E. Hopkins, J. H. Pawlow, D. L. Koren, K. S. Deters, S. M. Solivan, J. A. Davis, F. J. Gómez, and K. B. Wagener, Macromolecules. 34, 7920–7922 (2001) DOI: 10.1021/ma010930i.
- 57T. E. Hopkins and K. B. Wagener, Macromolecules. 36, 2206–2214 (2003) DOI: 10.1021/ma021668w.
- 58T. E. Hopkins and K. B. Wagener, Adv. Mater. 14, 1703–1715 (2002) DOI: 10.1002/1521-4095(20021203)14:23<1703::AID-ADMA1703>3.0.CO;2-5.
- 59T. E. Hopkins and K. B. Wagener, Macromolecules. 37, 1180–1189 (2004) DOI: 10.1021/ma035289u.
- 60S. M. Bush and M. North, Polymer (Guildf). 37, 4649–4652 (1996) DOI: 10.1016/0032-3861(96)00346-1.
- 61E. B. Berda and K. B. Wagener, Macromol. Chem. Phys. 209, 1601–1611 (2008) DOI: 10.1002/macp.200800077.
- 62E. B. Berda, R. E. Lande, and K. B. Wagener, Macromolecules. 40, 8547–8552 (2007) DOI: 10.1021/ma070513r.
- 63E. B. Berda and K. B. Wagener, Macromolecules. 41, 5116–5122 (2008) DOI: 10.1021/ma800616h.
- 64T. W. Gaines, E. B. Trigg, K. I. Winey, and K. B. Wagener, Macromol. Chem. Phys. 217, 2351–2359 (2016) DOI: 10.1002/macp.201600118.
- 65V. M. Marx, A. H. Sullivan, M. Melaimi, S. C. Virgil, B. K. Keitz, D. S. Weinberger, G. Bertrand, and R. H. Grubbs, Angew. Chem. Int. Ed. 54, 1919–1923 (2015) DOI: 10.1002/anie.201410797.
- 66M. Bell, H. G. Hester, A. N. Gallman, V. Gomez, J. Pribyl, G. Rojas, A. Riegger, T. Weil, H. Watanabe, Y. Chujo, and K. B. Wagener, Macromol. Chem. Phys. 220, (2019) DOI: 10.1002/macp.201900223.
- 67A. C. Church, J. H. Pawlow, and K. B. Wagener, Macromolecules. 35, 5746–5751 (2002) DOI: 10.1021/ma020239v.
- 68A. C. Church, J. H. Pawlow, and K. B. Wagener, Macromol. Chem. Phys. 204, 32–39 (2003) DOI: 10.1002/macp.200290053.
- 69P. P. Matloka and K. B. Wagener, J. Mol. Catal. A Chem. 257, 89–98 (2006) DOI: 10.1016/j.molcata.2006.06.006.
- 70D. Tao and K. B. Wagener, Macromolecules. 27, 1281–1283 (1994) DOI: 10.1021/ma00083a031.
- 71K. Nomura, H. Morimoto, Y. Imanishi, Z. Ramhani, and Y. Geerts, J. Polym. Sci. A Polym. Chem. 39, 2463–2470 (2001) DOI: 10.1002/pola.1223.
- 72Z. Zhang and Y. Qin, Polym. Chem. 10, 1018–1025 (2019) DOI: 10.1039/c8py01555d.
- 73H. Zhang, F. Liu, J. Cao, L. Ling, and R. Feng Sun, Chinese J. Polym. Sci. (Engl. Ed). 34, 242–252 (2016) DOI: 10.1007/s10118-016-1743-2.
- 74T. Miyashita, M. Kunisawa, S. Sueki, and K. Nomura, Angew. Chem. Int. Ed. 56, 5288–5293 (2017) DOI: 10.1002/anie.201700466.
- 75T. Yamada, K. Nomura, and M. Fujiki, Macromolecules. 51, 2377–2387 (2018) DOI: 10.1021/acs.macromol.8b00241.
- 76Y. Fushimi, M. Koinuma, Y. Yasuda, K. Nomura, and M. S. Asano, Macromolecules. 50, 1803–1814 (2017) DOI: 10.1021/acs.macromol.7b00047.
- 77K. Nomura, N. Yamamoto, R. Ito, and Y. Geerts, Macromolecules. 42, 5104–5111 (2009) DOI: 10.1021/ma900775x.
- 78K. Nomura, Y. Miyamoto, H. Morimoto, and Y. Geerts, J. Polym. Sci. A Polym. Chem. 43, 6166–6177 (2005) DOI: 10.1002/pola.21104.
- 79Y. Qin and M. A. Hillmyer, Macromolecules. 42, 6429–6432 (2009) DOI: 10.1021/ma9009824.
- 80J. C. Speros, B. D. Paulsen, B. S. Slowinski, C. D. Frisbie, and M. A. Hillmyer, ACS Macro Lett. 1, 986–990 (2012) DOI: 10.1021/mz300326k.
- 81Z. Zhang and Y. Qin, ACS Macro Lett. 4, 679–683 (2015) DOI: 10.1021/acsmacrolett.5b00292.
- 82K. R. Brzezinska, K. B. Wagener, and G. T. Burns, ACS Symp. Ser. 729, 408–418 (1999) DOI: 10.1021/bk-2000-0729.ch027.
10.1021/bk?2000?0729.ch027 Google Scholar
- 83R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, and W. R. Salaneck, Nature. 397, 121–128 (1999) DOI: 10.1038/16393.
- 84S. Günes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324–1338 (2007) DOI: 10.1021/cr050149z.
- 85N. F. Sauty, H. Li, L. C. Da Silva, and K. B. Wagener, Synth. Commun. 44, 2409–2415 (2014) DOI: 10.1080/00397911.2014.899606.
- 86D. J. Walsh, S. H. Lau, M. G. Hyatt, and D. Guironnet, J. Am. Chem. Soc. 139, 13644–13647 (2017) DOI: 10.1021/jacs.7b08010.
- 87T. W. Hsu, C. Kim, and Q. Michaudel, J. Am. Chem. Soc. 142, 11983–11987 (2020) DOI: 10.1021/jacs.0c04068.
- 88J. C. Foster, M. C. Grocott, L. A. Arkinstall, S. Varlas, M. J. Redding, S. M. Grayson, and R. K. O'Reilly, J. Am. Chem. Soc. 142, 13878–13885 (2020) DOI: 10.1021/jacs.0c05499.
- 89P. A. Fokou and M. A. R. Meier, Macromol. Rapid Commun. 31, 368–373 (2010) DOI: 10.1002/marc.200900678.
- 90S. E. Lehman, J. E. Schwendeman, P. M. O'Donnell, and K. B. Wagener, Inorganica Chim. Acta. 345, 190–198 (2003) DOI: 10.1016/S0020-1693(02)01307-5.
- 91S. H. Hong, D. P. Sanders, C. W. Lee, and R. H. Grubbs, J. Am. Chem. Soc. 127, 17160–17161 (2005) DOI: 10.1021/ja052939w.
- 92J. Pribyl, K. B. Wagener, and G. Rojas, Mater. Chem. Front. 5, 14–43 (2021) DOI: 10.1039/d0qm00273a.
- 93E. B. Trigg, M. J. Stevens, and K. I. Winey, J. Am. Chem. Soc. 139, 3747–3755 (2017) DOI: 10.1021/jacs.6b12817.
- 94K. Matsui, H. Li, Y. Nozue, G. Rojas, M. Bell, Y. Shinohara, Y. Amemiya, and K. B. Wagener, J. Polym. Sci. Part A: Polym. Chem. 55, 3090–3096 (2017) DOI: 10.1002/pola.28649.
- 95G. Lieser, G. Wegner, J. A. Smith, and K. B. Wagener, Colloid Polym. Sci. 282, 773–781 (2004) DOI: 10.1007/s00396-004-1091-6.
- 96S. Hosoda, Y. Nozue, Y. Kawashima, S. Utsumi, T. Nagamatsu, K. Wagener, E. Berda, G. Rojas, T. Baughman, and J. Leonard, Macromol. Symp. 282, 50–64 (2009) DOI: 10.1002/masy.200950806.
- 97E. Boz, A. J. Nemeth, K. B. Wagener, K. Jeon, R. Smith, F. Nazirov, M. R. Bockstaller, and R. G. Alamo, Macromolecules. 41, 1647–1653 (2008) DOI: 10.1021/ma071403n.
- 98R. G. Alamo, K. Jeon, R. L. Smith, E. Boz, K. B. Wagener, and M. R. Bockstaller, Macromolecules. 41, 7141–7151 (2008) DOI: 10.1021/ma801152p.
- 99X. Zhang, L. Santonja-Blasco, K. B. Wagener, E. Boz, M. Tasaki, K. Tashiro, and R. G. Alamo, J. Phys. Chem. B. 121, 10166–10179 (2017) DOI: 10.1021/acs.jpcb.7b08877.
General References
- L. Caire da Silva, G. Rojas, M. D. Schulz, and K. B. Wagener, Prog. Polym. Sci. 69, 79–107 (2017) DOI: 10.1016/j.progpolymsci.2016.12.001.
- H. Li, L. Caire da Silva, M. D. Schulz, G. Rojas, and K. B. Wagener, Polym. Int. 66, 7–12 (2017) DOI: 10.1002/pi.5188.
- M. D. Schulz and K. B. Wagener, Macromol. Chem. Phys. 215, 1936–1945 (2014) DOI: 10.1002/macp.201400268.